透過您的圖書館登入
IP:3.12.161.77
  • 學位論文

生物滲濾系統對生活雜排水中大腸桿菌之抑制效果

Reduction of Escherichia coli Viability by Biofilters for Greywater Treatment

指導教授 : 童心欣

摘要


將生活雜排水處理回收為再生水是解決現今水資源不足的方法之一,其中生物過濾因其經濟可行性而成為實廠上常用的技術。本研究以灼燒後磨碎的牡蠣殼及發泡煉石作為生物滲濾系統之濾材,並利用大腸桿菌(Escherichia coli)及大腸菌群作為可能致病菌之指標,觀察並計算濾床對大腸桿菌之去除率,並討論其抑制機制。濾床分為牡蠣殼結合煉石組(以下稱濾材組)和玻璃珠(對照)組,並以事先配製之合成生活雜排水馴養超過兩個月,並另外架設未經馴養的濾床作為對照組。在批次大腸桿菌抑制實驗中,經馴養後之濾材在48小時內將大腸桿菌數量減少至於培養基上無法計數,抑制率達5 log10;未經馴養之濾材則無抑制效果。而在連續流濾床實驗中,經馴養之濾材濾床對生活雜排水中大腸桿菌的去除率最高可達95.95 ± 2.35%,並且優於馴養之玻璃珠濾床,同時生物質的重量上濾材組也較玻璃珠組要來得多,證實本濾床中大腸桿菌的抑制和去除機制主要來自於微生物間的交互作用。然而,在氨氮、正磷酸鹽及溶解性有機碳的去除率表現上不甚理想,若欲應用於實場,增加水力停留時間或是增設多階段處理單元來提升去除效率以符合回收水水質標準。本結果證明利用生物滲濾系統在處理生活雜排水上,微生物提供之功能及其對生活雜排水中大腸桿菌的影響,同時提供未來開發新興水源應用之資訊。

並列摘要


Domestic greywater reclamation may be an effective method to increase water resources. Consider the effectiveness and energy consumption, biofiltration may be one of the available technologies for greywater recycle. However, the possibility of pathogen transmission is always a concern in greywater reuse. The objective of this study was to explore the viability inhibition of Escherichia coli (E. coli) in biofilter columns which were designed for greywater treatment. The column media were consisted with oyster shell (OS) and light expanded clay aggregate (LECA). Filters were acclimated with synthetic greywater for over two months. Under batch condition at 25°C, the acclimated OS-LECA media reduced over 5 log10 of culturable E. coli in 48 hours, whereas unacclimated blank control media did not. Under continuous flow operation, the acclimated OS-LECA filter removed 95.95 ± 2.35% of the E. coli in the influent, greater than acclimated glass bead filter. However, both filters demonstrated low nutrients and dissolved organics removal efficiencies. Overall, the OS-LECA media can acclimate more biomass on media surface than glass beads media. Therefore OS-LECA biofilters have higher efficiency in E. coli inactivation than the filters packed with glass beads. This low-cost and low energy-consumed biofiltration module can be applied to future greywater recycle for environmental protection purpose.

參考文獻


Clark, R. M., Rossman, L. A., & Wymer, L. J. (1995). Modeling Distribution System Water Quality: Regulatory Implications. Journal of Water Resources Planning and Management, 121(6), 423-428. doi:doi:10.1061/(ASCE)0733-9496(1995)121:6(423)
Aina, O. D., & Ahmad, F. (2013). Carcinogenic health risk from trihalomethanes during reuse of reclaimed water in coastal cities of the Arabian Gulf. Journal of Water Reuse and Desalination, 3(2), 175-184. doi:10.2166/wrd.2013.062
Alshameri, A., He, H., Zhu, J., Xi, Y., Zhu, R., Ma, L., & Tao, Q. (2018). Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Applied Clay Science, 159, 83-93. doi:https://doi.org/10.1016/j.clay.2017.11.007
Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. doi:https://doi.org/10.1016/j.pecs.2008.06.002
Asada, T., Omichi, M., Kimura, T., & Oikawa, K. (2001). Bactericidal Effect of Calcium Oxide and Calcined Shell Calcium on Legionella pneumophila. Journal of Health Science, 47(4), 414-418. doi:10.1248/jhs.47.414

延伸閱讀