透過您的圖書館登入
IP:18.191.8.216
  • 學位論文

以金奈米環表面電漿子共振結合光熱與光動力滅活癌細胞效果

Combination of Photothermal and Photodynamic Inactivation of Cancer Cell through Surface Plasmon Resonance of Gold Nanoring

指導教授 : 楊志忠

摘要


在本論文中,利用透過飛秒雷射激發侷域表電漿子共振波長為1064 nm 附近的金奈米環,結合光熱療法與光動力療法來滅活SAS口腔癌細胞,得到相較於單獨光熱或光動力療法更顯著的癌細胞滅活效果。光熱效應係由金奈米環表面電漿子共振的增強吸收所產生的熱能。光動力療法則由金奈米環吸附光敏劑磺化鋁酞菁(AlPcS)達到增強AlPcS雙光子激發效率,以增加單態氧的產量。細胞滅活的臨界飛秒雷射強度在鍵結金奈米環與AlPcS時明顯低於金奈米環未鍵接AlPcS的情況。比較使用中心波長同為1064 nm且平均功率相同的連續波雷射與飛秒雷射照射癌細胞結果,可以確認在飛秒雷射激發下雙光子吸收對於產生光動力療法的關鍵作用。

並列摘要


The more effective inactivation of oral cancer cell SAS through the combination the photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on the localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of Au nanoring (NRI) under femtosecond (fs) laser illumination is demonstrated. The PTT effect is caused by the LSPR-enhanced absorption of Au NRI. The PDT effect is generated by linking Au NRI with the photosensitizer of AlPcS for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower, when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.

參考文獻


[1] M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yen, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330-5442 (2013).
[2] A. Jurranz, P. Jaen, F. S. Rodriguez, J. Cuevas, and S. Gonzalez, “Photodynamic therapy of cancer. Basic principles and applications,” Clin. Transl. Oncl. 10, 148-154 (2008).
[3] S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669-2675 (2007).
[4] I. Yoon, J. Z. Li and Y. K. Shim, “Advance in photosensitizers and light delivery for photodynamic therapy,” Clin. Endosc. 46, 7-23 (2013).
[5] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nature Med. 18, 1580-1585 (2012).

延伸閱讀