透過您的圖書館登入
IP:3.141.24.134
  • 學位論文

實尺寸兩層樓鋼板剪力牆子結構擬動態試驗與分析

Pseudo Dynamic Test and Analysis of A Full Scale Two-Story Steel Plate Shear Wall Substructure

指導教授 : 蔡克銓

摘要


鋼板剪力牆在外國已有許多學者進行研究,其應用不論是在新建結構物或者是結構物的補強方面,也漸受重視。雖然鋼板剪力牆是很有效且兼經濟性的抗側力系統,但過去對於多層樓鋼板剪力牆構架的研究,並未有過實尺寸的實驗研究,而常都是以縮尺的方式來設計試體,進行實驗探討其行為,這樣的試體,其可能發生的問題在於無法完全反映出在實際應用上所會遭遇到的困難,以此種思維為出發點,本研究以一實尺寸兩層樓的鋼板剪力牆構架進行子結構擬動態實驗,希望能從此次的實驗找出在實際應用上可能發生的問題,並將根據此次實驗的結果,提出有關剪力牆板周圍梁柱容量設計的建議。 本研究目的在於探討多層樓鋼板剪力牆的耐震行為,其中包括尋求較為適當的分析模型、周圍梁柱的行為探討以及束制構件的設計問題,其研究項目如下所列:(1)分析模型研究( TensionOnly Material之開發),(2)梁柱設計方法(合成梁效應、容量設計建議),(3)加勁型鋼板剪力牆束制構件之設計,(4)網路擬動態試驗技術。試驗試體採用一實尺寸兩層樓鋼板剪力牆構架,跨度8公尺,高度4公尺,所採用之鋼板厚度分別為3公釐(1F)及2公釐(2F),所用之材質為求一般應用之普遍性,是採用SS400鋼板(材料特性與A36相近),其餘鋼材則是採用A572材料。 研究結果顯示,使用本研究所提出之拉力場形成角度修正公式,應可得到較接近實際狀況的結果,利用PISA3D程式建立模型時,使用新開發之TensionOnly material來模擬strip model中拉力桿件的行為,能夠準確模擬未束制鋼板剪力牆的行為。利用本研究所提出之彎矩估算方法,可以準確估出梁上彎矩,供容量設計使用,至於柱彎矩之計算,在未來仍須進行近一步探討,在設計時,考慮樓板效應,以合成梁的概念來設計剪力牆周圍的梁斷面,可以得到較為經濟的設計結果,試體在2005年4月建構完成,預計在2005年8月進行試驗。

並列摘要


In recent years, several researchers have confirmed that the steel panel shear wall (SPSW) can be a viable seismic force resisting system for building structures. Although the SPSW can cost-effectively satisfy the lateral stiffness, strength and ductility requirements for seismic buildings, research on large scale SPSW structures are rather limited. The purposes of this combined experimental and analytical investigation on the seismic responses of SPSW structures include: 1) investigate the seismic performance of a full scale two-story steel panel shear wall structure, 2) investigate the capacity design criteria of the boundary beam and column elements surrounding the steel panels, 3) investigate the effectiveness and seismic design of the lateral restrainers for the SPSW, 4) incorporating the PISA3D into the networked substructure pseudo-dynamic tests of the 2-story SPSW structure, 5) investigate the seismic performance of the RBS connections in the SPSW specimen, 6) investigate the effect of the concrete slab in preventing the buckling of the girder when large inter-story drifts and severe buckling of the SPSW occurred, 7) validate the TensionOnly material implemented for the PISA3D in simulating the responses of the SPSW structure. Measuring eight meters tall and four meters wide, the 2-story SPSW structure is considered to be the world largest ever tested. The thickness of SS400 grade steel plate for first story wall is 3mm and for second story is 2mm. All the boundary beam and column elements are A572 GR 50 steel. Preliminary research results indicate that the post-buckling strength of several one-story SPSW specimens can be satisfactorily predicted by using the strip model and the tension-only material implemented for the PISA3D program. In addition, it is found that the direction of the tension field action can be more accurately predicted if the flexural responses of the boundary beam and column elements are considered. It is found from the analysis that the flexural demand imposed on the top boundary beam can be satisfactorily predicted by the superposition of vertical load effects on the fix-ended beam and horizontal load effects on the moment resisting frame. It is found that the bending moment distribution computed in this manner can be applied for the capacity design of the boundary beam element. The precise flexural demand imposed on the column requires further investigation. The full scale 2-story SPSW specimen has been constructed since April 2005, and is scheduled for testing in August, 2005.

參考文獻


21. 林盈成 (2004), 「低降伏強度鋼板剪力牆之耐震行為研究」,國立台灣大學土木工程學系結構工程組碩士論文。
1. Astaneh-Asl, A., (2002), “Seismic Behavior and Design of Composite Steel Plate Shear Walls”, Steel TIPS Report, Structural Steel Educational Council, Moraga, CA, May.
4. Berman, J., and Bruneau, M., (2003), “Plastic Analysis and Design of Steel Plate Shear Walls”, Journal of Structural Engineering, ASCE, Vol. 129, No.11, November 1, 2003, pp. 1448-1456
5. Berman, J., and Bruneau, M., (2005), “Experimental Investigation of Light-Gauge Steel Plate Shear Wall”, Journal of Structural Engineering, ASCE, Vol. 131, No.2, February 1, 2005, pp. 259-267.
6. Chi, B., and Uang C.M., (2002), “Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns”, Journal of Structural Engineering, ASCE, Vol. 128, No.4, April, pp. 464-473.

被引用紀錄


洪唯竣(2016)。新建雙層含鋼板剪力牆之鋼筋混凝土構架耐震設計與實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600466
黃彤(2015)。束制型與穿孔型鋼板剪力牆耐震設計研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01727
李宛竹(2015)。含鋼板剪力牆之新建鋼筋混凝土構架 耐震設計與反應分析研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01440
楊依璇(2014)。三維鋼板剪力牆耐震設計研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01861
蘇磊(2014)。多樓層鋼板剪力牆底層邊界柱構件耐震設計研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01065

延伸閱讀