透過您的圖書館登入
IP:3.145.60.29
  • 學位論文

含鋼板剪力牆之新建鋼筋混凝土構架 耐震設計與反應分析研究

Seismic Design and Response Analysis of RC Frames with Infilled Steel Plate Shear Wall

指導教授 : 蔡克銓

摘要


鋼板剪力牆為一具高側向勁度、強度,韌性及良好消能性能之新型鋼結構抗 側力系統。以往有關鋼板剪力牆邊界構件之研究或實際應用,多採用型鋼作為鋼 板剪力牆系統之邊界梁柱斷面,近年來,已有一些利用鋼板剪力牆補強既有鋼筋 混凝土(RC)構架之相關研究,然而關於鋼板剪力牆應用於新建鋼筋混凝土結構之 技術,較少有更進一步之研究。本研究與洪唯竣同學合作,設計、製作並測試一 座新建實尺寸兩層樓含鋼板剪力牆鋼筋混凝土構架(SPSW-RCF)試體,並藉由擬 動態與反覆載重試驗結果探討SPSW-RCF 精確及簡化數值分析模型之建置技術 與效益。本研究提出簡化且可靠之設計與分析方法,並以數值模型研究六層 SPSW-RCF 之耐震性能。 鋼筋混凝土構件具有良好之抗壓能力,適當設計之鋼筋混凝土邊界構件,具 有良好之雙向抗彎強度及韌性之優點。由於鋼骨與RC 構件在軸力效應下的彎矩 容量計算方法不同,本研究以RC 邊界構件的彎矩、剪力及軸力需求,經組合力 互制關係預測底層邊界柱塑鉸發生位置,並在避免邊界柱於最大考量地震下柱頂 產生塑鉸之前提下,採疊加法考慮構架側位移與鋼板張力場兩效應,提出含束制 構件之多樓層鋼板剪力牆鋼筋混凝土邊界構件容量設計方法。並利用數值模型建 立新建六層樓含鋼板剪力牆之RC 構架(6-story SPSW-RCF),進行上述RC 邊界 構件之性能分析研究,並提出一套預埋鐵件之設計與施工方法。 本研究主要利用PISA 3D 建立SPSW-RCF 之分析模型,鋼筋混凝土邊界構 件採用Fiber Beam-Column Element,將預埋鐵件建入鋼筋混凝土梁柱斷面內,並 使用雙向板條模型模擬鋼板拉力場效應。混凝土材料考慮鋼筋之圍束效應,鋼筋 以頸縮(Pinching)現象模擬鋼筋握裹滑移之影響。鋼板板條則使用Tension-Only Bilinear 材料模擬鋼板受壓失去壓力強度之行為。 本研究另依照台灣地區建築物耐震設計規範及美國ACI-318 14 之建議,採 取抗側力系統與重力系統分開之方式設計新建六層含鋼板剪力牆之RC 構架,並 利用前述之數值模型進行構架非線性動力歷時分析,並以60 組三種不同回歸期 之地震分析結果討論整體構架及構件受震反應,可歸納出以下結論: 1. 抗側力與重力系統分開之新建六層 SPSW-RCF ,相較於合併時之二元系統 更能有效降低重力系統之梁柱尺寸,由完整之非線性分析模型中可知,重力 系統在在彈性反應階段能提供之抗側力比例大約是抗側力系統之10%,在最 大考量地震作用時的非線性反應中則為40%。 2. 非線性階段之鋼板剪力牆抗側力比例較彈性階段時為低。 3. 本研究所提之容量設計法可確保RC 邊界構件之受震反應;但對於多層 SPSW-RCF 邊界柱構件需求計算可進行更進一步之研究以獲得更為經濟且 安全之設計。

並列摘要


Steel plate shear walls (SPSWs) have been recognized as an lateral load resisting system of high lateral stiffness, strength and ductility for steel structures. Past studies on the boundary elements (BEs) in SPSWs were focused on the structural steel members. Researches on seismic retrofit of reinforced concrete frames (RCFs) with SPSWs have been reported. However, the seismic design method for new RC frames with infilled SPSWs (SPSW-RCF) has not been fully addressed in some other recent studies. The purpose of this research is to develop a practical design and analysis procedure for the SPSW-RCF, and investigative the seismic performance of SPSWRCF examples using the PISA3D nonlinear response history analysis procedures. The reinforced concrete BEs are more effective in resisting compression than steel BEs. Properly designed RC BEs may provide excellent biaxial bending capacity and ductility. The effect of axial loads on the flexural capacity of RC members is very different from that on steel members. This research incorporates the relationships among the axial, bending and shear forces induced from both the frame and panel actions on RC BEs in computing the possible locations of the plastic hinges in the 1st story column. The proposed design procedures avoid the plastic hinges forming at the 1st story column top. This study also investigates the capacity design procedures for restrained SPSW-RCF using restrainers to reduce the demand on BEs. The design and fabrication methods for steel embedment connecting the steel panel and BEs are also studied. In order to investigate the design, analysis and fabrication methods of the proposed SPSW-RCF, a full scale 2-story SPSW-RCF specimen was designed, fabricated and pseudo-dynamically tested in collaboration with another graduate student, Mr. Wei-Jun Hong. The reliability of PISA 3D SPSW-RCF analytical models is investigated through the test data analysis of this 2-story SPSW-RCF specimen. The RC members are constructed using Fiber Beam-Column Element, and the steel panels are represented by the bi-directional strip model. The confining effect on the concrete is considered, while the slip effect in steel rebar is considered by using the degrading bi-linear model. The Tension-Only Bilinear material model is used to simulate the lack of the diagonal compressive strength when the panel buckles in shear. In order to investigate the performances of the proposed design methods, PISA3D nonlinear responses histories analyses of the 6-story SPSW-RCF building models are conducted using a suite of 20 ground motions in three different level earthquakes (total 60). The Taiwanese seismic design force requirements and ACI 318-14 specifications are incorporated in the designs of the 6-story SPSW-RCF building example in Chiayi. The gravity system (GS) and lateral force resisting system (LFRS) are separated (SGS). From the system and BE’s responses, some observations can be summarized as follows: 1. The proposed design method can effectively reduce the member sizes in the GS in the SGS case. The shear in the GS is 8% of that in the LFRS in the elastic stage, while it increases to 40% in the nonlinear stage. 2. The ratio of shears in panel and LFRS is lower in nonlinear stage than that in the elastic stage. 3. The proposed capacity design procedures are effective to prevent BEs from forming plastic hinges at the unfavorable locations. However, further researches on demands of RC vertical boundary elements in multi-story SPSW-RCF are warrant to achieve the economic and safer designs.

參考文獻


[47] 林盈成 (2004),「低降伏強度鋼板剪力牆之耐震行為研究」,國立台灣大
[48] 林志翰 (2005),「實尺寸兩層樓鋼板剪力牆子結構擬動態試驗與分析」,國
[49] 游宜哲 (2006),「物件導向非線性靜動態三維結構分析程式之擴充」,國立台
[51] 李昭賢 (2007),「鋼板剪力牆系統之耐震設計研究」,國立台灣大學土木
[54] 朱駿魁 (2010),「多樓層鋼板剪力牆結構耐震分析與設計之研究」,國立台灣

被引用紀錄


洪唯竣(2016)。新建雙層含鋼板剪力牆之鋼筋混凝土構架耐震設計與實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600466

延伸閱讀