透過您的圖書館登入
IP:3.15.37.162
  • 學位論文

玻璃纖衣單模態釔鋁石榴石晶體光纖的研製

The Research and Development of Glass-Cladding Single-Mode YAG Crystal Fiber

指導教授 : 黃升龍

摘要


單模態光纖是許多應用方面的關鍵元件,例如大增益主動元件、高效率雷射和高亮度光源。對於光纖放大器而言,單模態傳輸是一個重要的方式可以避免增益之競爭。因此,為了得到在特定波長更大的增益,我們研發單模摻鉻釔鋁石榴石晶體光纖,以為下世代之光纖通訊架構提供1000-1600 nm的光纖放大器。 實驗製造出高濃度的玻璃包覆摻鉻釔鋁石榴石晶體光纖,在單纖衣的情況下鉻離子的濃度增加至1.023×〖10〗^24 m^(-3),相對於之前的結果提升3倍多的濃度大小。透過模擬,普通情形下,當光纖長度為4.5 cm,纖心直徑為25 µm,幫浦功率為450 mW時,可得最大增益為1.69 dB;在優化模型中,光纖長度為10 cm,纖心直徑為20 µm,鉻離子的濃度為2×〖10〗^24 m^(-3),幫浦功率為 20 W時,可達之最大增益提升為23.43 dB。增益飽和信號功率約為7 dBm。 本實驗室採用雷射加熱基座生長法生長單晶纖心,並藉由提拉雷射加熱基座生長法進行玻璃包覆。為了減少模態數量,我們採用德國Schott公司生產的高折射率玻璃N-LasF9當做纖衣材料進行包覆,成功地製造出了單模純釔鋁石榴石晶體光纖。透過2 ~ 50 mm/min的包覆速度,N-LaSF9纖衣包覆的純釔鋁石榴石晶體光纖的截止波長可以在1381 nm至941 nm的範圍內被調變,在包覆速度大於10 mm/min時,其折射率恰好低於晶體纖心,波長1064 nm之光開始可以在N-LaSF9包覆之純釔鋁石榴石晶體光纖中傳輸。採用50 mm/min的包覆速度時可以使高折射率玻璃N-LaSF9之折射率下降至多達0.009。我們模擬出一個與LHPG製程相匹配,纖心直徑為12 µm,包覆速度為13 mm/min的N-LaSF9包覆的釔鋁石榴石晶體光纖,能夠在整個螢光波段單模態傳輸。此外,我們設計並製作出一根在大於1400 nm時會單模態導光的N-LaSF9纖衣純釔鋁石榴石光纖,並且觀察到其近場模態。

並列摘要


Single-mode fibers are the key components in applications such as high gain active component, high efficient laser and high brightness light source. As for fiber amplifier, single-mode propagating is an essential way to get rid of the impact from gain competing. Thus in order to get larger gain at a typical wavelength, single mode Cr4+:YAG crystal fiber need to be developed. High concentration glass-cladding Cr4+:YAG crystal fibers were made. The concentration of Cr4+ ions was increased to 1.023×〖10〗^24 m^(-3), improving more than 3 times compared to previous fibers. Within a normal case, fiber length of 4.5 cm, core diameter of 25 µm and a maximum pump power of 450 mW, a maximum gain of 1.69 dB can be get. The improved model is fiber length of 10 cm, core diameter of 20 µm Cr4+ concentration of 2×〖10〗^24 m^(-3) and pump power of 20 W, in which the gain can be improved to 23.43 dB. The gain saturation signal power is about 7 dBm. A single-mode pure YAG crystal fiber was successfully fabricated. The cores of crystal fibers were grown by laser-heated pedestal growth (LHPG) method, and the cladding made of glass by the co-drawing LHPG process. The high-refractive index glass, N-LasF9 from Schott has been chosen as the most proper cladding material to decrease the transverse mode numbers. The cut-off wavelength of this N-LaSF9-cladding pure YAG SCCF can be tuned from 1381 to 941 nm by varying the cladding co-drawing speed from 2 to 50 mm/min in the CD-LHPG process. With a cladding speed larger than 10 mm/min, an N-LaSF9-cladding pure YAG SCCF begins to guide at 1064 nm. The maximum refractive index drop of N-LaSF9 glass cladding induced by the LHPG process can reach about 0.009 with the cladding speed of 50 mm/min. Corresponding to our LHPG fabrication process, a 12-µm core diameter and a cladding speed of 13 mm/min is needed to develop an N-LaSF9-cladding YAG fiber which is single-mode guiding at the whole emission bandwidth. In addition, the mode pattern of an N-LaSF9-cladding YAG fiber which is designed to be single-mode guiding beyond 1400 nm is fabricated.

參考文獻


[1] G. Thomas, B. Shraiman, P. Glodis, and M. Stephens, “Towards the clarity limit in optical fibre,” Nature, vol. 404, no. 6775, pp. 262–264, 2000.
[2] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sige, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31µm,” Opt. Lett., vol. 16, pp. 1747–1749, Nov. 1991.
[3] T. Kasamatsy, Y. Yano, and H. Seller, “1.50-µm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-µm dual-wavelength pumping,” Opt. Lett., vol. 24, pp. 1684–1686, Dec. 1999.
[4] T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett., vol. 84, pp. 3804–3806, May 2004.
[5] S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., vol. 77, pp. 818–820, Aug. 2000.

延伸閱讀