透過您的圖書館登入
IP:13.59.18.228
  • 學位論文

太陽能光電模組之表面溫度估測及散熱技術

Surface Temperature Estimation and Cooling Technology for Photovoltaic Modules

指導教授 : 李允中

摘要


一般市面上的太陽能模組以矽晶為主,不僅價格昂貴,而且平均轉換效率約在20%左右,目前的光電轉換效率仍然是偏低的,若加上環境因素影響,將使發電的效率更差,實務上就更難以普及,在經濟成本的考量上,勢必要有提升效益的策略,使得發電成本相對降低,因此,除了增進轉換效率外,若能適度地提升系統的發電效率,將會帶來相當多的利益。 本研究開發一水冷式的散熱系統,並搭配無線技術來做控制,此散熱系統可有效增加模組的發電效率。本系統可藉由氣象資訊遠端估測太陽能光電模組的輸出功率,建立一套自動化噴水散熱機制,避免夏季時因模組溫度到達功率飽和溫度,而輸出功率出現衰退,比較有無此項新型的產能提升技術的發電量差異,最終將達到發電產量提升14.9%之目的。 此自動化太陽能模組散熱系統不需要安裝溫度感測器於面板上,是在遠端控制平台上利用氣象資訊快速且準確地計算模組溫度,而採用的無線控制技術大幅地增加系統的便利性及可擴充性,此發明應用於大型太陽能發電廠時,節省了前端感測器的花費及佈線的人力成本,再者,此系統可直接應用於過去已建置的既有太陽能發電系統,而無須破壞原有的系統架構。

並列摘要


Multi-crystalline silicon is commonly used by photovoltaic (PV) modules in practice. A PV module is expensive, but the average conversion efficiency of the module only reaches about 20%, which is relatively low. The efficiency of PV power generation may be worse after taking environmental factors into account, so the promotion of using PV modules becomes more difficult in reality. From an economic perspective, it is necessary to develop a strategy that improves the power generation efficiency of PV modules while reducing the cost of PV power generation. Thus, in addition to increasing the efficiency of the conversion, it will bring considerable benefits if the efficiency of PV power generation can be improved. This study develops a water cooling system for PV modules based on wireless technology to increase the efficiency of PV power generation. This cooling system uses weather information to estimate the output power of a PV module remotely. An automated water cooling mechanism is established to avoid the temperature of the PV module reaching saturation so that the power generation declines in summer. With this novel system, the power output increases by 14.9%. The automated cooling system does not require employing a temperature sensor. Using weather information, the system can quickly and accurately estimate the output power of a PV module and be remotely managed by a control platform. The costs associated with using front-end sensors (sensor purchasing, labor, and wiring) can be largely reduced, when the proposed system is applied to a large-scale solar generation plant. Furthermore, this system can be directly installed on existing PV modules without destroying the architecture of the modules.

參考文獻


Abdolzadeh, M., & Ameri, M. (2009). Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable Energy, 34(1), 91-96.
Archer, C. L., & Jacobson, M. Z. (2005). Evaluation of global wind power. Journal of Geophysical Research: Atmospheres, 110(D12).
Bambrook, S. M., & Sproul, A. B. (2012). Maximising the energy output of a PVT air system. Solar Energy, 86(6), 1857-1871.
Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer communications, 30(7), 1655-1695.
Borowy, B. S., & Salameh, Z. M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE transactions on energy conversion, 11(2), 367-375.

延伸閱讀