透過您的圖書館登入
IP:18.227.81.35
  • 學位論文

酸水解時間對不同木質纖維原料製備奈米結晶纖維素之影響

Effect of Acid Hydrolysis Duration on Crystalline Nanocellulose Preparation from Different Lignocellulosic Materials

指導教授 : 柯淳涵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


纖維素為植物細胞壁中的主要成分,除了蘊藏量豐富之外,更是一種具有可再生性及生物可降解性的綠色永續材料。奈米尺寸的材料賦予產品新的機能,因此不僅要將纖維素從植物中分離出來,更要將分離出來的纖維素縮小到奈米尺寸。本研究的目的為利用不同木質纖維原料經由不同前處理及不同酸水解時間製備奈米結晶纖維素,實驗結果藉由動態光散射分析儀、X-Ray繞射分析、掃描式電子顯微鏡以及熱種分析儀進行分析並比較產物的性質。分析結果發現結晶度及介達電位皆隨著水解時間增加而有所增加,其中原料的結晶度為影響酸水解效率的主要因素。另一方面,經過N-甲基嗎晽-N氧化物的前處理會提升酸水解的效率,而木質素的存在會降低酸水解的效率。透過一系列漂白、前處理以及酸水解等步驟,可成功地從台灣赤楊獲得奈米結晶纖維素,因此做為台灣本土的先驅速生樹種,台灣赤楊是一個適合且具有潛力的原料來源。

並列摘要


Cellulose is one of the major components in the plant cell wall. It is abundant, renewable and bio-degradable. Nanotechnology is currently at the center of global attention. In this study, different lignocellulosic materials were employed to produce crystalline nanocellulose (CNC) by different pretreatments and durations of acid hydrolysis, then the results were analyzed and compared using dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analyzer (TGA) techniques. The results show that the crystallinity and zeta potential of materials increased with the increased acid hydrolysis time, and the crystallinity of raw materials is a key factor which would affect the efficiency of acid hydrolysis. On the other hand, the NMMO pretreatment could improve the efficiency of acid hydrolysis, but the lignin would decrease the efficiency of acid hydrolysis. CNC is produced from Alnus formosana successfully by multiple process including bleaching, NMMO pretreatment and sulfuric acid hydrolysis. As a native species of Taiwan, we can consider the Alnus formosana as a suitable and potential resource.

參考文獻


Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Xiao, B., Sun, X., & Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 74(2), 307-319.
Moe, S. T., & Ragauskas, A. J. (1999). Oxygen delignification of high-yield kraft pulp. Part I: structural properties of residual lignins. Holzforschung, 53(4), 416-422.
Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., & Castro, E. (2008). Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and microbial technology, 42(2), 160-166.
Amiri, H., & Karimi, K. (2013). Efficient dilute-acid hydrolysis of cellulose using solvent pretreatment. Industrial & Engineering Chemistry Research, 52(33), 11494-11501.

延伸閱讀