透過您的圖書館登入
IP:18.188.152.162
  • 學位論文

氣體輔助UV固化奈米結構成型及其在光學與檢驗應用

Gas-Assisted UV Curing Nanostructure Fabrication and Application in Optics and Inspection

指導教授 : 楊申語
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


具深寬比奈米柱陣列之材料表面能夠改變元件之物理特性,進而提升產品效能,已應用於檢測、光學、工業多領域。為了快速、低成本、大面積製作奈米柱陣列,本研究製作陽極氧化鋁模具,並轉印為高分子模具及金屬鎳模具,應用氣體輔助UV固化成型,進行結構複製,以得到具高深寬比之奈米柱結構,並用於SERS檢驗、抗反射及改變接觸角。 實驗中先製作陽極氧化鋁孔洞模具,透過改變電解液與電壓參數,得到不同孔洞間距的結構。接著透過AAO模具進行兩次轉印製作相同結構之模具,第一次轉印透過氣輔熱壓將AAO結構轉印到高分子PC基板上,然後透過電鑄獲得結構如AAO母模但機械強度較高之金屬鎳模具,使其可重複使用而不易變形。另外為使模具製作更方便與廉價,透過兩次熱壓轉印製作高分子PETG基板,其過程是利用Tg點較高之PC模為母模,透過氣輔熱壓轉印Tg點較低之PETG模具。 接著以製作出來模具為母模進行結構複製,以黏性低流動性高UV膠為材料,澆鑄到母模空洞內,並以透過氣體輔助施壓,UV壓固化成型,得到具有高深寬比奈米柱結構成品,結構最大深寬比達10.49。最後,使用複製成品進行SERS、抗反射及接觸角量測,以驗證試片之拉曼增強效果、抗反射與疏水效果。經量測其散射光譜檢測靈敏度均達到105以上,其中以180 V AAO模具複製之結構最佳,可達到2.69 × 106;於反射率量測中具有奈米柱結構均低於1 %以下,180 V AAO模具複製之結構具有最佳之抗反射效果,其反射率為0.53%;於接觸角量測中具有奈米結構其接觸角勻大於100゚,具有效之疏水效果,其中以150 V AAO模具複製之結構最佳,其接觸角為107.7゚。本研究證實氣體輔助UV固化製程具有快速、簡易、低成本方式製作奈米結構並應用的潛力。

並列摘要


The surface of the material with a high aspect ratio nano-rod array can change the physical properties of the component, thereby improving product performance, and can be applied to a wide range of applications such as inspection, optics, antireflection, and hydrophobic etc. Fabricate large area nano-rod structures with low cost, in this study, an anodized aluminum mold was firstly fabricated and transferred into a polymer mold and a metal nickel mold. The gas-assisted UV curing molding was used to reproduce the nano-rod structure, so that it could be mass-produced, and a high aspect ratio nano-rod was obtained by a simple and rapid method. Final that applications for SERS inspection, antireflection and hydrophobic. First, through two-step anodization process nanostructure mold, AAO nanostructure were obtained using phosphoric acid and Oxalic acid as electrolyte. AAO templates with different pitches and pore diameter can be fabricated by changing the electrolyte、anodization voltage and the widening time. The second method, uses the two-step transfer method of AAO mold to make the mold with the same structure. One is to make the polymer substrate through two gas-assisted hot pressing methods. The principle is to use two polymers with different Tgs. The second method is to make a nickel metal mold with higher mechanical strength through electroforming to ensure long-life. Then, nano-rod array was fabricated by gas assisted casting of UV-curable resin and UV-curing. The maximum aspect ratio of 10.49 was obtained. Finally, surface-enhanced Raman scattering (SERS)、reflectance and contact angle measurements were performed on the replicated products to verify the Raman enhancement factor(EF) and anti-reflection and hydrophobicity effects. The results showed that, for SERS experiment, the thin silver layer is sputtered on the nanostructured , we can test 4-Aminothiophenol(4-ATP) and Adenine that Raman spectrum, and the 180_AAO structure enhancement factor (EF) value is 2.69 × 106. For reflectance measure, the Nano rod structure all can be reduced to 1%, and the structure by 180 V AAO mold that reflectance can be reduced to 0.53%. For contact angle measure is all over 100°, which has the effect of hydrophobicity effect. Among them, the structure by 150 V AAO mold that contact angle is 107.7°. This research demonstrates the potential of gas assisted UV curing processes to make nanostructures in a fast, easy, and cost-effective manner.

並列關鍵字

AAO Gas-assisted UV curing Raman Nanostructures Antireflection Contact angle

參考文獻


[1] Q. Fang, L. Wang, Q. Cheng, J. Cai, Y. Wang, M. Yang, X. Hua, F. Liu, A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples, Anal. Chim. Acta. 881 (2015) 82–89. doi:10.1016/j.aca.2015.04.047.
[2] X. Yan, H. Li, W. Zheng, X. Su, Visual and Fluorescent Detection of Tyrosinase Activity by Using a Dual-Emission Ratiometric Fluorescence Probe, Anal. Chem. 87 (2015) 8904–8909. doi:10.1021/acs.analchem.5b02037.
[3] D. Li, D.-W. Li, J.S. Fossey, Y.-T. Long, Portable Surface-Enhanced Raman Scattering Sensor for Rapid Detection of Aniline and Phenol Derivatives by On-Site Electrostatic Preconcentration, Anal. Chem. 82 (2010) 9299–9305. doi:10.1021/ac101812x.
[4] S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring, Anal. Bioanal. Chem. 386 (2006) 1025–1041. doi:10.1007/s00216-006-0574-3.
[5] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Ultrasensitive Chemical Analysis by Raman Spectroscopy, Chem. Rev. 99 (1999) 2957–2976. doi:10.1021/cr980133r.

延伸閱讀