透過您的圖書館登入
IP:18.216.186.164
  • 學位論文

新型槓桿黏彈性制震壁之動力特性及試驗

Dynamic Characteristics and Experiment of a New Lever Viscoelastic Wall Damper

指導教授 : 周中哲

摘要


臺灣位於中小地震頻繁區域,結構物除了須確保在大地震力作用下之安全性外,於中小度地震力作用下,降低結構物的變位及加速度,使建築物有良好之使用舒適度亦是須加以重視的重點,本研究研發「速度型 + 位移型」消能裝置—槓桿黏彈性制震壁(Lever Viscoelastic Wall Damper),此槓桿黏彈性制震壁在不同等級地震作用下具不同消能機制:(1)在中小度地震與設計地震作用下,由槓桿放大層間側位移,使黏彈性阻尼器承受數倍層間側位移之剪變形而消散地震能量;(2)在最大考量地震作用下,由限位裝置限制黏彈性阻尼器持續變形,避免黏彈阻尼器因過大之剪變形而產生永久損壞,同時,藉由摩擦阻尼器產生滑動而消散地震能量,因此,具位移放大機制之槓桿黏彈性制震(LVEW)相較一般傳統黏彈性制震壁可大幅減少黏彈性材料的使用量,本文將由單一黏彈性阻尼器之力學行為推導至槓桿黏彈性制震壁整體力學行為,供工程師設計使用,並以此理論公式設計實尺寸槓桿黏彈性制震壁試體進行動態實驗與靜態實驗,接著,對此試體於實驗過程中所產生之問題進行改善,並進行相同之實驗程序後比較改善前後之各項實驗參數以及驗證此槓桿黏彈性制震壁於不同層間側位移作用下黏彈性阻尼器與摩擦阻尼器之切換機制。最後,為了探討具有位移放大機制之槓桿黏彈性制震壁之消能效率,將依照所使用之黏彈性材料需相同以及在最大層間側位移作用下黏彈阻尼器之剪應變需達到200 %之設計原則,模擬出不具有層間側位移放大機制之一般傳統黏彈性制震壁的消能遲滯迴圈,並比較兩者之消能效率,藉以展現槓桿黏彈性制震壁之優勢。

並列摘要


Taiwan is located in a frequent earthquake area. In addition to ensure structure safety for big earthquake, let it have good comfort by reducing the displacement and acceleration of the structure for small earthquake is also the focus of attention. A new energy dissipation device-a lever viscoelastic wall damper (LVEW) that consists of a velocity-dependent damper and a displacement-dependent damper has been developed for the seismic resistance. This new device can improve the energy dissipation of structures based on different mechanism and kinematics for different earthquake levels . For a small earthquake, the viscoelastic damper is subjected to an interstory displacement amplified by a lever to dissipate seismic energy. For a big earthquake, the viscoelastic damper is restricted by a stopper to avoid damage, and the friction device is activated to dissipate seismic energy. Since the LVEW has a mechanism to amplify the interstory drift induced by a small earthquake, it greatly reduces the amount of viscoelastic materials adopted for the conventional viscoelastic wall damper (VEW). The main purpose of this paper is to derive a series of formula from viscoelastic component to whole device, and then we designed one full-scale specimen according to theoretical formula and conducted a dynamic and static test. Next, we modified some design in specimen to improve the problems caused by the test. and then we compared their test parameters and validated its performances. Finally, in order to verify the energy dissipation efficiency of the lever viscoelastic wall damper with displacement amplification mechanism, according to the viscoelastic material used must be the same, the shear strain of the viscoelastic damper should be 200% under the maximum interstory displacement. We simulated the hysteresis loop of the general viscoelastic wall damper without interstory displacement amplification mechanism. And to compare the energy dissipation efficiency of the two, in order to demonstrate the advantages of the lever viscoelastic wall damper.

參考文獻


1. American Institute of Steel Constructure. (2010). Specification for Structural Steel Buildings (ANSI/AISC 360-10). American Institute of Steel Constructure.
2. Chang, K. C., Soong, T. T., Oh, S. T. & Lai, M. L. (1995). Seismic Behavior of Steel Frame with Added Viscoelastic Dampers. Journal of structural engineering, 121(10),1418-1426.
3. Chang, K. C., Chen, S. J. & Lai, M. L. (1996). Inelastic Behavior of Steel Frame with Added Viscoelastic Dampers. Journal of structural engineering, 122(10), 1178-1186.
4. Chang, K. C., Lin, Y. Y. & Lai, M. L. (1998). Seismic Analysis and Design of Structures with Viscoelastic Damper. Journal of Earthquake Technology. NO. 380, Vol. 35, No. 4, pp. 143-166.
5. Chang, K. C., Lai, M. L., Hao, D. S., & Yeh, Y. C. (1993).Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers. Technical Report NCEER-93-0009.

延伸閱讀