透過您的圖書館登入
IP:3.140.188.16
  • 學位論文

槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證

Application of Leverage-type Stiffness Controllable Mass Damper on Vibration Control and its Experimental Verification

指導教授 : 朱世禹

摘要


使用傳統被動調諧質量阻尼器(TMD)對於結構減振控制是一有效的控制方法,但TMD對於頻率之去調諧效應十分敏感,故藉由提供額外主動控制力之混合型質量阻尼器(HMD)與半主動質量阻尼器(SAMD)相應而生,但此類系統大多利用油壓制動器作為主動控制力來源,在施工或實際應用上皆有一定限制,不僅需要消耗較大能量,並對控制力時間延遲效應較為敏感,可能會使控制效果不如預期,因此本文利用槓桿式勁度可控質量阻尼器(LSCMD)作為減振控制系統改善以上情形並且可降低衝程反應,其可使用被動控制模式或是半主動控制模式作為控制策略,而半主動控制模式是使用LQR最佳控制理論作為基礎。此外,由過去的研究與實際應用案例中可證實基礎隔震可有效降低上傳之結構地震力,然而對於單一週期之摩擦單擺隔震系統(FPS)應用於基礎隔震在遭受近域地震時,此FPS基礎隔震無法有效降低上傳至結構之地震力,甚至會使隔震層位移過大,故本文利用LSCMD配合單擺摩擦隔震結構,改善FPS於近域地震時,隔震效果較差的現象。本文針對一般結構與FPS隔震結構裝設LSCMD進行理論研究與數值分析以探討控制成效,並且由實驗測試其控制成效與驗證數值分析結果,更進一步探討LSCMD本身呈現之特性。由數值分析與實驗測試結果皆可展現LSCMD對於一般結構或是FPS隔震結構之減振控制確實有較佳成效並且有較小衝程反應,並且可發揮其半主動控制之優點與提升FPS於近域地震時之隔震性能。

並列摘要


The conventional tuned mass damper (TMD) is an effective control device for vibration suppression, but it is very sensitive to the fluctuation in tuning of the designed frequency to the natural frequency of the main system. In this regard, the hybrid mass damper (HMD) and the semi-active mass damper (SAMD) equipped with additional active control forces are proposed to provide a better performance. In general, the active control force is supplied by a powered mechanism which is energy-consuming and is more sensitive to the actuation time delay. A leverage-type stiffness controllable mechanism is adopted in this study to improve the performance of a conventional TMD by reducing its required stroke. The proposed LSCMD can be activated either in passive mode or in semi-active mode in accord with the designed control strategy. Based on the optimal LQR output feedback control algorithm, the control performance of the leverage-type stiffness controllable mass damper (LSCMD) can be improved as deigned. The control effectiveness of regular buildings and structures isolated by the friction pendulum system (FPS) is investigated. Both numerical simulations and experimental verifications are conducted in this study when the LSCMD is equipped. From the observations in this study, the structural responses when equipped with LSCMD can be suppressed with smaller stroke. Furthermore, the excessive displacements of the isolated layer due to near field earthquakes can be effectively controlled if the LSCMD is installed.

參考文獻


1. Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M., Sekiguchi, H., “Optimal Design of Dynamic Absorbers for A System Subjected to Random Excitation”, JSME International Joural, Vol. 34, No. 2, pp. 218.226, (1991).
2. Crandall, S.H., Mark, W.D., “Random Vibration in Mechanical Systems”, Academic Press, New York, pp.55-101, (1973).
4. Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., Lu, K.H., “Optimal Performance of Discrete-time Direct Output-feedback Structural Control with Delayed Control Forces”, Structrual Control and Health Monitoring, Vol. 15, No. 1, pp. 22-42, (2008).
8. Hrovat, D., Barak, P., Rabins, M., “Semi-Active versus Passive or Active Tuned Mass Dampers For Structural Control”, Journal of Engineering Mechanics (ASCE), Vol. 109, No. 3, pp. 691-705, (1983).
9. Juang, J.N., “Applied System Identification”, PTR Prentice Hall Englewood Cliffs, New Jersey, (1994).

延伸閱讀