透過您的圖書館登入
IP:3.138.114.198
  • 學位論文

低功率多頻段多規格互補式金氧半射頻接收機前端電路設計

Low-Power Multi-Band and Multi-Standard CMOS RF Receiver Front-End Circuit Design

指導教授 : 陳少傑

摘要


隨著無線通訊系統急速的發展,越來越多無線通訊規格在我們生活中同時被使用著。因此,將多頻段多規格無線通訊系統合併為單一的無線收發器是一項重要的研究課題。其中的關鍵技術為一個多頻段的前端電路設計。本文著重於設計一個多頻段多規格的射頻前端電路應用於GSM900、DCS1800、Bluetooth和802.11a/b/g 等規格。我們所提出的多頻段多規格射頻前端電路適用於直接降頻收發機架構,使用硬體共用的概念達到減少面積和降低功率消耗的優點,並且電路為全雙端型式可抑制電源所造成的雜訊。我們所提出的電路使用TSMC CMOS 0.13微米製程實現,整體面積為0.62平方毫米,在低電壓增益模式時,功率消耗為8毫瓦;在高電壓增益時,功率消耗為8.04毫瓦,電源電壓為1.2伏特。我們所提出的多頻段低雜訊放大器可切換於0.9、1.8、2.4和5.2GHz 頻段,為一個兩級的放大器,其中第一級放大器採用我們所提出的雙迴路迴授技術可達到低雜訊和低功率消耗,並且擁有寬頻阻抗匹配的特性。第二級放大器具有選取工作頻段的功能,使放大器可以操作在多個頻段。在低電壓混波器的設計上,由於低電壓可能造成混波器對於製程變異更加敏感,我們提出了一個適應性電流注入的方法,可減輕此問題,使得在先進製程下混波器的設計可更加精確且實用。

並列摘要


As the demand of wireless system increases rapidly, more and more wireless communication standards are used simultaneously in our lives. Therefore, a multi-band and multi-standard communication system that can be integrated into a single wireless transceiver becomes an important research issue. The dominant technique to achieve highly-integrated receiver architecture is the multi-band front-end circuit design. This Thesis is focused on a multi-band and multi-standard RF receiver front-end for GSM900, DCS1800, 802.11 a/b/g, and Bluetooth applications. The proposed multi-band RF receiver front-end adopts a direct conversion architecture, thus reducing chip area and power consumption by hardware sharing. Moreover, it uses a fully differential structure to suppress the supply noise. The measurement results show that the RF receiver front-end occupies an area of 0.62 mm2, dissipating 9.36mW at Post-simulation and 12.29mW at measurement with a 1.2V power supply in TSMC CMOS 0.13μm process. The multi-band LNA configured in 0.9, 1.8, 2.4, and 5.2 GHz bands is composed of a two-stage amplifier. The first-stage amplifier is based on our proposed dual-loop feedback technique to reach low noise and power consumption, and has a wideband matching from 0.9GHz to 5.2GHz. The second-stage amplifier has a band selection function with switching capacitors and resistors. In designing the low supply-voltage mixer, an adaptive current-injection method is brought up to improve the problem of process variation caused by the low supply-voltage required, and this topology is more practical and accurate in advanced process technology.

並列關鍵字

RF front-end circuit LNA Mixer

參考文獻


[2]K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas, P. Merakos, I. Bouras, S. Bouras, S. Plevridis,, and N. Haralabidis, “A Dual-Band 5.15–5.35-GHz, 2.4–2.5-GHz 0.18-μm CMOS Transceiver for 802.11a/b/g Wireless LAN,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1180-1184, July 2004.
[3]S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS Receiver for Dual-Band Applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2178-2185, May 1998.
[4]P. Leroux, J. Janssens, and M. Steyaert, “A 0.8-dB NF ESD-Protected 9-mW CMOS LNA Operating at 1.23 GHz,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 760-765, Jun. 2002.
[5]Y. L. Guillou, O. Gaborieau, P. Gamand, M. Isberg, P. Jakobsson, L. Jonsson, D. L. Déaut, H. Marie, S. Mattisson, L. Monge, T. Olsson, S. Prouet, and T. Tired, ”Highly Integrated Direct Conversion Receiver for GSM/GPRS/EDGE with On-chip 84-dB Dynamic Range Continuous Time ΣΔ ADC,”IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 403-411, Feb. 2005.
[6]J. Janssens and M. Steyaert, CMOS Cellular Receiver Front-Ends, Kluwer Academic Publishers, 2002.

延伸閱讀