透過您的圖書館登入
IP:3.145.17.46
  • 學位論文

以人工齲齒模型來探討抗菌樹脂填補系統於牙釉質及牙根牙本質之影響

Effects of Antibacterial Composite Filling Systems on Enamel and Root Dentin by Using Artificial Caries Model

指導教授 : 姜昱至

摘要


現今的牙醫材料科學不斷的發展與進步。近年來,複合樹脂因為美觀的需求與考量,逐漸成為臨床填補的主要材料。由於在臨床上最常見之填補物重新填補置換原因為繼發性齲齒,而使其應用受到限制。因此理想的牙科修復填補材料,不僅可以修復牙齒硬組織,而且具有抗菌性。繼發性齲齒是由於材料邊緣微滲漏(micro-leakage)而引起之細菌存在於牙本質小管中,或複合樹脂材料與牙齒硬組織之黏附不良而導致,以上都有可能導致牙髓感染並且引起術後之其他併發症。因此,牙科修復填補材料之抗菌性質具有重要的臨床意義,並且可以使醫師在做牙齒修形時以較小侵入性的方式來復形治療。 本實驗目的為評估修復填補材系統之抵抗去礦化能力,使用了掃頻光源式光學同調斷層掃瞄(Swept-source OCT, SS-OCT)與微米級電腦斷層掃描造影系統(Micro-CT),以非破壞性之方法來針對樣本牙釉質與牙根牙本質區域來作觀察。 本研究之樣本製備為:64塊於齒頸部的地方切出體積6mm × 6mm × 2mm之樣本。於樣本中央,齒頸部牙釉質/牙根牙本質交界之表面備製一直徑2mm、深2mm圓柱體之窩洞,填入兩種不同的複合樹脂材料,分別為 Beautifil II(含玻璃表面反應填料, S-PRG filler)和 Estelite,與兩種牙科黏著劑,分別為Single Bond Universal和FL Bond II(含含玻璃表面反應填料)。 本研究分為兩部分進行人工齲齒實驗模型: 第一部分:再礦化與去礦化之酸鹼循環(pH-cycling)實驗模型之建立。 第二部分:口腔生物膜環境模型(Oral Biofilm Reactor)之建立。 我們以定性以及定量下,以微米級電腦斷層掃描、掃頻光源式光學同調斷層掃瞄兩種方式,觀察樣本之牙釉質與牙根牙本質表面變化,除此之外更利用電腦軟體CT-An及Image J定量分析計算出去礦化體積百分比與平均病灶深度,以及做微硬度(Micro-hardness)測試與分析。 實驗結果顯示,含有玻璃表面反應填料之牙科修復填補材料,經過去礦化過程後,不論是牙釉質或是牙根牙本質區域,相較於不含玻璃表面反應填料之牙科修復填補材料,較有抵抗去礦化之能力,也就是具有更好的抗齲能力。並且我們比較了掃頻光源式光學同調斷層掃瞄與微米級電腦斷層掃描兩種影像分析系統,掃頻光源式光學同調斷層掃瞄對於觀察去礦化表面更方便簡單,結果顯示兩種方式具有高度相關性。 綜合以上結論,本研究證實掃頻光源式光學同調斷層掃瞄不論在研究或是臨床之運用是一個很實用的分析診斷工具。並且本實驗結果證實含有玻璃表面反應填料之牙科修復填補材料,較有抵抗去礦化之能力,也就是具有更好的抗齲能力,因此在臨床上的應用有助於預防繼發性齲齒之潛力。

並列摘要


In dentistry nowadays, constant development and improvement in material science has been noticed. The use of dental composite resin material is increasing dramatically in recent years due to the esthetic demand. The ideal restorative material would not only perfectly restore hard dental tissues, but also possess antibacterial properties, as the most common reason for the filling replacement is secondary caries. Secondary caries is caused by bacterial infection/accumulation due to micro-leakage, and further bacteria presence in dentinal tubules. The poor adhesion of composite material to hard dental tissues would aggravate the situation. All of the above may lead to pulp infection and cause postoperative complications. Antibacterial properties of restorative materials are of major clinical importance and would allow for less invasive preparation on hard dental tissue. The object of this study was to evaluate the anti-demineralization/anti-caries ability of antibacterial composite filling systems on enamel and root dentin by using non-destructive methods: Swept-source OCT(SS-OCT)and micron-computerized tomography (Micro-CT). This study was carried out in two parts for artificial caries models setting Part I: pH-cycling model. Part II :Oral Biofilm Reactor model. In this study, Sixty-four specimens, 6mm x 6mm x 2mm enamel/root dentin block with a cylinder cavity for each, were divided into two groups (n = 32) : pH-cycling group and the OBR group. Cavities were filled with Beautifil II composite resin or Estelite composite resin. Dentin bonding agents used in this study were Single Bond Universal and FL Bond II. We qualitatively and quantitatively examined the demineralization lesions of surrounding enamel and root dentin portion by Micro-CT and SS-OCT. We defined the lesion type based on the SS-OCT images. Micro-hardness test was tested to verify the changes of surrounding affected tissue. With the limited results, we can conclude that S-PRG filler-containing composite resin can effectively resist demineralization process and has the potential to prevent caries in enamel and root dentin regions. S-PRG filler-containing composite resin has good potential for caries prevention. Moreover, SS-OCT is a convenient method for examining demineralization lesions, and well correlated to Micro-CT in both tooth substrates.

參考文獻


[1] WHO Oral Health Country/Area Profile Programme.
[3] J.L. Drummond, Degradation, fatigue, and failure of resin dental composite materials, Journal of dental research 87(8) (2008) 710-719.
[5] S. Kositbowornchai, C. Sukanya, T. Tidarat, T. Chanoggarn, Caries detection under composite restorations by laser fluorescence and digital radiography, Clinical oral investigations 17(9) (2013) 2079-2084.
[7] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography, Science (New York, NY) 254(5035) (1991) 1178.
[8] Y. Shimada, A. Sadr, Y. Sumi, J. Tagami, Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations, Current oral health reports 2(2) (2015) 73-80.

延伸閱讀