透過您的圖書館登入
IP:3.15.27.232
  • 學位論文

無症狀成年人在不同任務下腰大肌測量以及其功能表現之相關性—使用核磁共振和超音波影像之研究

Measurement of Psoas Major Muscle during Different Tasks Correlating with Functional Performance in Asymptomatic Adults — A MRI and Ultrasonography Study

指導教授 : 王淑芬

摘要


研究背景:隨著全球老年人口的增加,老化的議題逐漸受到重視。根據研究顯示40歲以後每年骨骼肌肌肉將流失1%,骨骼肌肌肉的流失常伴隨動作功能表現變差,進而影響生活品質。骨骼肌肌肉的流失的範圍包含全身肌肉,過去常以核磁共振成像(MRI)或電腦斷層掃描(CT)評估全身的肌肉量,此方法不僅耗時且成本高昂,因此近幾年臨床研究探討身體特定區域代表全身的肌肉量並且建立橫切面的影像與受試者動作功能表現或術後存活率相關,目前已確定的區域包含大腿中段和腰椎第三節處的腰大肌。腰部腰大肌為人體上唯一連結腰椎和下肢的肌肉,從解剖學、生理學以及生物力學的相關研究,都顯示當腰大肌收縮時,可維持腰部穩定。過去研究已證實下背痛以及肌少症的病人,對於該肌肉的控制會產生變化。但腰大肌位於人體較深層的位置,對於腰大肌的研究目前多為靜態的核磁共振影像、電腦斷層掃描與針極肌電圖(Needle Electromyography)來觀察腰大肌的肌肉截面積改變或是活化程度,使用動態量測且非侵入性的研究仍十分有限。 研究目的:1) 建立超音波影像量測腰部腰大肌寬度和截面積之信效度;2) 研究直膝抬腿、膝蓋沿大腿方向收縮、腰椎前突三個動作在超音波觀察下的腰大肌肌肉寬度和截面積變化量,收縮前後及不同動作下是否不同;3) 觀察腰大肌與功能性表現在無下背痛族群的相關性;4) 觀察年輕和中年組對於腰大肌肌肉寬度和截面積的影響。 研究方法:量測受試者的超音波和核磁共振影像作為比較,為建立使用腰大肌肌肉信效度。收取20到65歲之健康無下背痛成年人,以超音波影像儀器擷取受試者在側躺、屈膝側躺或坐姿以及仰躺時,腰大肌靜態的肌肉寬度和肌肉截面積。超音波影像量測的方法有兩種,外側影像:探頭放在腰椎第三節的水平高度,向外側水平移動7公分,請受試者在側躺、坐姿、仰躺的姿勢下量測;前外側影像:探頭放在腰椎第三節的水平高度,水平向外移動至前外側,直到看見完整的腰大肌肌肉邊界,請受試者在側躺、側躺屈膝、仰躺的姿勢下量測。建立超音波量測腰大肌肌肉寬度和肌肉截面積之再測信度。另外,在量測超音波的同一天,紀錄受試者的腰部肌肉核磁共振影像,該核磁共振影像在受試者仰躺放鬆的姿勢下完成。完成超音波影像後,進行5次坐站測試以及坐站行走測試,並探討腰大肌之厚度或截面積收縮變化量與5次坐站測試,坐站行走測試之相關性。 研究結果:本研究共招募19位健康無下背痛成年人受試者(男性:11位;女性:8位) ,使用兩種超音波方法,建立腰大肌的再測信度。外側影像和前外側影像的肌肉寬度之再測信度皆為優良(外側影像:ICC3,3 = 0.92~0.97;前外側影像:ICC3,3 = 0.99)。前外側影像的肌肉截面積再測信度為優良(ICC3,3 = 0.98~0.99)。效度測試中,外側影像在坐姿與仰躺姿勢下,超音波量測之肌肉厚度與核磁共振影像之量測相關性分別為顯著的中度與高度正相關,但是兩種量測工具所得的數值相減差值平均值與95%信心水準下的差值範圍,分別為11.96 (2.30, 21.61)和12.34 (2.72, 21.96)。另外,使用外側影像在側躺、前外側影像在側躺,側躺屈膝、仰躺下量測量測腰大肌肌肉寬度,皆為顯著的高度正相關,且兩種量測工具所得的數值在95%信心水準下的差值範圍皆包括差值為0的直線。前外側影像在側躺,側躺屈膝下,量測截面積的效度相關性為顯著的非常高度正相關。所有的動作任務皆能顯著增加腰大肌的肌肉寬度和截面積,但是不同的動作任務之間無顯著差異。5次坐站測試和坐站行走測試與超音波量測肌肉寬度收縮變化量相比,不具有顯著的相關性。但是5次坐站測試與截面積收縮變化量相比,呈現顯著的中度負相關。將年輕與中年組肌肉寬度與截面積收縮變化量大小的參數相比較,皆不具有顯處差異。 結論:研究顯示,超音波影像量測腰大肌將探頭放置於前外側處,可提供量測收縮時面積變化,具優良的信效度,且與坐到站具功能性相關,顯示超音波影像量測腰大肌面積變化可以作為未來肌肉動態評估具可近性的重要指標。

並列摘要


Background: In the aging society, degeneration in the musculoskeletal system is important both medically and socioeconomically (Inouye, Studenski, Tinetti, Kuchel, 2007; J. C. Lee, Cha, Kim, Kim, Shin, 2008; Parkkola Kormano, 1992). Previous studies have revealed that skeletal muscle mass starts to decrease after the age of 40 by approximately 1% of muscle mass per year (Janssen, Heymsfield, Wang, Ross, 2000). Poor functional performance typically follows skeletal muscle mass loss and thus affects the individual’s quality of life. The significant associations between the cross-sectional area (CSA) of the psoas major (PM) at the L3 level and morbidity in elderly patients have been described (Drudi et al., 2016; Hsu et al., 2019; Okamura et al., 2018; Wallace et al., 2017). PM is the only muscle that attaches to both the lumbar spine and hip joint. Anatomical, physiological, and biomechanical studies revealed that PM contraction could maintain spinal stability. Motor control impairment was discovered in patients with low back pain (LBP) and sarcopenia. Most studies used static MRI or needle EMG to evaluate the CSA or activation of PM. However, studies with non-invasive, dynamic and real-time information are still limited. Purpose: The purposes of this study are: 1) to test the reliability and validity of ultrasonography in measuring the MW and CSA of the PM; 2) to investigate if there is any difference in the change of MW or CSA during pull-knee-approximate-hip (PKAH), short lordosis (SL), and active straight leg raise (ASLR) with ultrasonography; 3) to identify the correlation between the change in MW or CSA and functional performance; 4) to investigate influence of age on the change in muscle thickness of the PM. Methods: To establish the reliability and validity of measuring the PM muscle width (MW) and CSA with ultrasound imaging (USI) and MRI. Healthy adults without LBP aged 21 to 65 years old were recruited. MW and CSA were measured by USI (MWUSI and CSAUSI) during three tasks: PKAH, SL and ASLR. We used two methods to measure the MWUSI and CSAUSI of the PM. The first method was placing the transducer horizontally at the L3 level and moving 7 cm laterally (L view). The second method was placing the transducer horizontally at the L3 level and moving anterior-laterally (AL view) until the intact border of the PM muscle could be observed. MRI of the patient in the supine position would be taken on the same day. Then the correlation of the change in MWUSI (ΔMWUSI) or CSAUSI (ΔCSAUSI) and functional performance including time up and go (TUG) and 5-repeated sit to stand (5R-STS), were measured. Results: A total of 19 healthy participants aged 21 to 65 years were enrolled in this study (11 males and 8 females). We used two USI methods to establish the reliability and validity of MW and CSA. In MWUSI and CSAUSI, the reliability values of the L and AL views were excellent in all tasks (MWUSI in the L view: ICC3,3= 0.92~0.97; MWUSI in the AL view: ICC3,3 = 0.99; CSAUSI in the AL view: ICC3,3= 0.98~0.99). Comparing the MW of PM to assess the agreement of validity test with two methods of USI and MRI found that, the AL view improved validity values. Moreover, the CSAUSI measured by the AL view had highly correlated and agreement for validity values. All of the tasks could significantly increase the CSA of PM, however, no significance between tasks. There was a no correlation between 5R-STS or TUG and ΔMWUSI of PM. However, ΔCSAUSI was negatively correlated with 5R-STS. In comparison with ΔMWUSI or ΔCSAUSI of PM in young and middle-aged groups, the middle-aged group had thinner ΔMWUSI and ΔCSAUSI but showed no significant differences. Conclusion: The present study indicated that the use of ultrasound imaging in the assessment of PM is a tool with high reliability and validity. The tasks we selected could activate PM contraction, but there was no significant difference in contraction between the tasks. The measurement of PM using ultrasound image could provide real-time dynamic information during muscle contraction with functional significance.

參考文獻


Aboufazeli, M., Akbari, M., Jamshidi, A. A., Jafarpisheh, M. S. (2018). Comparison of selective local and global muscle thicknesses in females with and without chronic low back pain. Ortop Traumatol Rehabil, 20(3), 197-204. doi:10.5604/01.3001.0012.1473
Almajid, R., Goel, R., Tucker, C., Keshner, E. (2020). Balance confidence and turning behavior as a measure of fall risk. Gait Posture, 80, 1-6. doi:10.1016/j.gaitpost.2020.05.020
Amini, B., Boyle, S. P., Boutin, R. D., Lenchik, L. (2019). Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. J Gerontol A Biol Sci Med Sci, 74(10), 1671-1678. doi:10.1093/gerona/glz034
Anderson, D. E., Bean, J. F., Holt, N. E., Keel, J. C., Bouxsein, M. L. (2014). Computed tomography-based muscle attenuation and electrical impedance myography as indicators of trunk muscle strength independent of muscle size in older adults. Am J Phys Med Rehabil, 93(7), 553-561. doi:10.1097/phm.0000000000000059
Andersson, E. A., Grundström, H., Thorstensson, A. (2002). Diverging intramuscular activity patterns in back and abdominal muscles during trunk rotation. Spine (Phila Pa 1976), 27(6), E152-160. doi:10.1097/00007632-200203150-00014

延伸閱讀