透過您的圖書館登入
IP:18.220.66.151
  • 學位論文

寬頻且低功耗之毫米波放大器之設計

Design of the Broadband and Low-Power Millimeter-Wave Amplifiers

指導教授 : 王暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文包含兩部分。第一部分為應用於阿塔卡瑪大型毫米及次次毫米波陣列 (Atacama large millimeter/submillimeter array)第一頻段的Q頻段 (30-50 GHz) 極低功耗低雜訊放大器,第二部分為應用於短距離無線通訊的V頻段 (50-75 GHz) 可變增益低雜訊放大器,兩部分皆使用90奈米互補式金氧半場效電晶體(CMOS)製程製作。 Q頻段極低功耗低雜訊放大器採用電流再利用技術之LC共振,使最大增益在高頻產生正斜率,進而產生寬頻之效果。除此之外,電流再利用技術能改善共源共閘放大器輸出阻抗極端之問題,進而減少匹配網路之間的損耗。然而,電流再利用技術無法明顯改善雜訊指數,故在輸入級採用共源級串接退化電感。量測結果顯示本論文提出之低雜訊放大器在34 GHz有小訊號峰值增益為20.5 dB,3 dB頻寬為26 GHz,頻寬內雜訊指數平均為4.9 dB,直流功耗為10.1 mW。 V頻段極低功耗可變增益低雜訊放大器採用雙重變壓器耦合技術來提升增益和降低雜訊指數。此外,為了達成增益控制的功能,採用雙重變壓器耦合技術結合電流控制架構,藉由雙重變壓器耦合技術的旁路電路,使得加入電流控制架構後不影響原電路之峰值增益和雜訊指數且還能得到增益控制。量測結果顯示本論文提出之可變增益低雜訊放大器在66 GHz有小訊號峰值增益為17.1 dB,增益控制範圍為8 dB,在53 GHz有雜訊指數最低值5.8 dB,頻寬內雜訊指數變化皆約為1.8 dB,頻寬內之輸出反射係數皆大於4.2 dB,直流功耗為5.7 mW。

並列摘要


This thesis consists of two parts.The first part is a Q-band ultra-low-power low noise amplifier in 90-nm CMOS prccess for the first band of the Atacama large millimeter/submillimeter array. Another shows a V-band variable-gain low noise amplifier in 90-nm CMOS prccess for short-distance wireless communication. In the first part, the Q-band ultra-low-power low noise amplifier adopts the LC resonance of the current-reused technique, so that the maximum gain produces a positive slope at high frequencies, thereby producing a wide-band effect. In addition, the current-reused technique is used to improve the problem of extreme output impedance of the cascode amplifier, thereby reducing the loss between matching networks. However, the current-reused technique cannot effectively improve the noise figure, so a common source stage with degraded inductor is used in the input stage. The proposed low noise amplifier achieves 20.5 dB small signal with 26-GHz 3-dB bandwidth(25.5-51.5 GHz) and the 4.9 dB average noise figure in operating frequency with 10.1-mW dc power. In the second part, the V-band ultra-low power variable gain low noise amplifier is used double-transformer-coupling technique to achieve sufficient gain and low noise figure performance. In order to achieve the function of gain control, a double-transformer-coupling technique combined with a current-steering structure is used. Through the bypass capacitor of the double-transformer-coupling technique, the peak gain and noise figure of the original circuit are not affected after combining with the current-steering structure. However, there is also the function of variable gain. The proposed variable gain low noise amplifier achieves 17.1 dB small signal with 17-GHz 3-dB bandwidth (50-67 GHz), 8 dB gain control range, 5.8 dB minimum noise figure at 53 GHz, and a variable noise figure of 1.8 dB in 3-dB bandwidth. Besides,the power consumption is 5.7 mW.

參考文獻


[1]C. -N. Chen et al., "38-GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5G MMW data links," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021.
[2]H. Chou, Z. Ke and H. Chiou, "A low power compact size forward body-biased K-band CMOS low noise amplifier," Asia-Pacific Microwave Conference 2011, 2011, pp. 494-497.
[3]Y. -T. Chang and H. -C. Lu, "A low power broadband K-band low noise amplifier," 2014 Asia-Pacific Microwave Conference, 2014, pp. 223-225.
[4]H. Chou, Z. Ke and H. Chiou, "A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology," 2012 Asia Pacific Microwave Conference Proceedings, 2012, pp. 750-752.
[5]Y. -T. Chang and H. -C. Lu, "A V-Band low-power digital variable-gain low-noise amplifier using current-reused technique with stable matching and maintained OP1dB," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, Nov. 2019.

延伸閱讀