透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

混合氧化鉺奈米粒子與旋佈玻璃的矽基發光元件

Silicon-based Luminescence Devices Using a Mixture of Erbium Oxide Nanoparticles and Spin-on Glass

指導教授 : 林清富

摘要


由於資料傳輸速度的需求不斷的增加,光纖通訊變成了一項相當重要的技術,而摻鉺光纖放大器則是光通訊系統中的核心技術,這是近年來三價的鉺離子備受矚目的主要原因之一。同時,由於奈米技術的蓬勃發展,許多人利用奈米粒子的表面特性增加發光效率與材料的應用層面,對於大量資料傳輸的問題,提供了一個不同的解決方法。這篇論文將結合上述兩項優點而提出一個新製程方法:使用奈米粒子來製作摻鉺發光元件,主要利用奈米粒子的混合,並使用旋塗的方式沉積在矽基板上。 發光層發出的光波長為1530nm,在光通訊系統中是很重要的波段。主要成分為鉺離子與旋佈玻璃,其中鉺離子的來源是氧化鉺奈米粒子,而旋佈玻璃是已廣泛地在半導體製程中使用。同時也加入Yb2O3奈米粒子、P2O5幫助增加發光效率。除了所使用的材料,熱處理對於鉺離子的產生也相當重要。發光層的增益也會提出來討論。而此發光層的另一個重要的物理特性就是up-conversion發光,利用此特性可以用現有的紅外光半導體雷射當激發光源,透過多光子的吸收使電子躍遷到更高的能階以產生可見光。最後將介紹了在低溫下頻譜的變化與能量集中的變化,藉此了解鉺離子的特性。 與離子佈值、固相磊晶等其他技術比較,我們的製造技術簡單低成本,而且具有與現有IC產業結合的潛力,對於日後光學與電子產業的整合非常有幫助,值得做更進一步的研究。

關鍵字

奈米粒子 矽基元件

並列摘要


Because the demand for data transmission increases very fast, fiber-optic communication becomes a very important technology. Erbium doped fiber amplifier is the core technology in optical communication system. This is why Er3+ becomes an attractive issue for researches. Also, nanotechnology provides a different way to solve the problem. Many people focus on the surface effect of the nanoparticles and use it to increase emission efficiency. We combine these two advantages and introduce a new fabrication process to fabricate a luminescence device: using nanoparticles to fabricate Erbium doped luminescence devices. We mix nanoparticles and use spin coating process to deposit it on a silicon wafer. The emitting layer emits light at 1530 nm which is one of the most important wavelengths in optical communication. The basic compositions of this emitting layer are Er3+ and spin-on glass (SOG). Er3+ comes from Er2O3, while SOG is already popularly used in semiconductor fabrication. We also add other materials to increase the luminescence efficiency, like Yb2O3 nanoparticles and P2O5. Besides, the annealing process is certainly an important topic and is investigated in this work. The optical gain will also be discussed. Another important physical property is up-conversion luminescence. According to this property, we can use available low-cost near-infrared semiconductor laser to pump the device. Through the process of multi-photon absorption, the electron can transit to higher energy levels to produce visible light. In the end, we measure the spectra at low temperature in order to further realize the property of Er3+. Comparing to other kinds of fabrication technology, like ion implantation and solid-phase epitaxy, our fabrication process is much simpler and less expensive. It shows the promise of integrating light emitting device with the integrated circuit and deserves further integration.

並列關鍵字

nanoparticle erbium silicon-based devices

參考文獻


O. Lehmann, H. Meyssamy, K. Ko1mpe, H. Schnablegger, and M. Haase, “Synthesis, Growth, and Er3+ Luminescence of Lanthanide Phosphate Nanoparticles”, J. Phys. Chem. B, 107, pp. 7449-7453, 2003.
[2] Dominique Bayart, “Erbium-doped and Raman fiber amplifiers”, C.R. Physique, 4, pp. 65–74, 2003.
[3] S. Kennou, S. Ladas, M. G. Grimaldi, T. A. Nguyen Tan, J. Y. Veuillen, “Oxidation of thin erbium and erbium silicide overlayers in contact with silicon oxide films thermally grown on silicon”, Applied Surface Science, 102, pp. 142-146, 1996.
[4] Karine Seneschal, Frederic Smektala, Shibin Jiang, Tao Luo, Bruno Bureau, Jacques Lucas, Nasser Peyghambarian, “Alkaline-free phosphate glasses for ultra compact optical fiber amplifiers at 1.5 μm”, Journal of Non-Crystalline Solids, 324, pp. 179-186, 2003.
[5] A.J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics” Progress in Quantum Electronics, 26, pp. 225–284, 2002.

被引用紀錄


王緯楷(2007)。以奈米粒子與奈米結構製作矽基摻鉺發光元件之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.02015

延伸閱讀