Nanotechnology gives opportunity for many fields of engineering and optical communication provides the solution for huge quantity of data transmission nowadays. Accompanying the blooming research in nanotechnology and the demand of optical communication, a novel fabricating technique that utilizes nanoparticles to fabricate silicon-based optical communication device is introduced in this thesis. The structure of this device is a light emitting layer deposited on silicon substrate. The reason for choosing silicon as substrate is that silicon plays the leading role in modern integrated circuit (IC) industrial. The luminescence wavelength of this emitting layer corresponds to 1530 nm, which is a very important band in optical communication system. The emitting layer is mainly composed of Er3+ ions and host glass. The source of Er3+ ions is Er2O3 nanoparticles. The host glass is formed with spin-on glass (SOG), which is widely used in semiconductor manufacturing. There are also co-dopants including P2O5, Al, Ag, Si, and Yb2O3 nanoparticles being doped in the emitting layer in order to modify the physical characteristics and to improve light emission efficiency. The influences of these co-dopants are investigated. For the purpose of optical activation of Er3+ ions and other chemical reactions in the emitting layer, thermal processes are essential in the fabricating process. The heat treatment parameters are investigated too. Finally, observations of the optical gain exhibited in the emitting layer are given. Compared with ion implantation, solid phase epitaxy, and other techniques, our fabricating technique is simple and of low cost. This fabricating technique is a promising work and worth developing in the future.