本論文研究金屬-二氧化矽-矽穿隧二極體在矽能帶能量電激發光的特性。在室溫下電激發光的外部量子效率為10^(-5),這遠大於以往矽半導體晶體在低溫下對應於相同波長的發光效率(低於10^(-6))。我們提出了聲子輔助和激子參與的載子輻射復合模型來描述矽電激發光的頻譜。電激發光頻譜中,訊號主要的尖峰以及低能量的部分分別對應於橫向光學聲子和雙聲子輔助載子輻射復合的物理過程。對於在矽半導體晶體中輔助載子輻射躍遷所需的動量守恆,我們提出了聲子、粗糙介面、以及被侷限在空間中一個小範圍的載子等機制,來解釋高效率電激發光的現象。
The electroluminescence corresponding to silicon bandgap energy from metal-SiO2-silicon tunneling diodes was investigated. The external quantum efficiency of electrolumincscence is in the order of 10^(-5) at room temperature, which is much larger than the luminescence efficiency (< 10^(-6) at the same wavelength from bulk silicon. The electroluminescence spectra are well described using the theoretical model in terms of phonon-assisted and exciton-involved radiative recombination. The main peak and the low-energy tail of electroluminescence spectrum are due to the transverse optical (TO) phonon and two-phonon assisted recombination, respectively. The efficient room-temperature electroluminescence from silicon is believed to be due to the momentum conservation assisted by phonons, interface roughness, and localized carriers in the radiative recombination.