透過您的圖書館登入
IP:18.191.239.123
  • 學位論文

最佳化感測器部署應用於超高壓輸電線導體溫度估算

Optimal Sensor Placement for Conductor Temperature Estimation of Overhead Extra-High Voltage Power Transmission Lines

指導教授 : 江昭皚

摘要


動態熱額定容量(Dynamic thermal rating, DTR)技術用來管理電力系統輸電線路是有效和適當的方法。動態熱容量的評估採用輸電線上的溫度感測器來監測架空輸電線路的工作溫度,藉以計算出每個輸電線路的電流裕度,達到輸電安全的狀況下有效提升電網的輸電效益。然而,部署大量的溫度感測器可能不是一個可行的選擇,因為設備成本過高,且增加了電網整體結構的複雜性。本研究以臺灣中部地區的345 kV超高壓輸電線為例,目標是部署最少數量的溫度感測器,利用有放置溫度感測器的感測值可以有效的精準估計所有輸電線線路的導體溫度。本文提出的配置方法,利用特徵正交分解(Proper orthogonal decomposition, POD)進行溫度的特徵擷取,再利用瀰集進化演算法(Memetic algorithm, MA)決定最小數量的溫度感測器和其最佳感測器位置來追踪傳輸線的導體溫度和準確地估計完整的導體溫度。結果顯示此提出的方法可以只需要五分之一的感測器即可估測整體的輸電線線路溫度,並且有高精準度的導體溫度估測,其均方根誤差小於1。這種方法可以提供操作電網系統的熱容量增加和過載風險評估的可靠技術。

並列摘要


Dynamic thermal rating (DTR) technique is an effective and proper method to manage transmission lines in power system. Dynamic thermal rating utilizes on-line thermal sensors to monitor the operating temperature of overhead transmission lines, and calculates the ampacity margin of the transmission lines. The power transmission efficiency could be improved while under the safe condition. However, deploying a large number of thermal sensors may not be a viable option, because of high equipment costs and increasing the structural complexity of the power grid. A case study of the 345 kV extra high voltage transmission lines in central Taiwan was presented. The goal in this study is to allocate the minimum number of thermal sensors. Using the measurements where deploy the thermal sensor, the conductor temperature of whole transmission lines can be efficiently accurate estimation. This paper proposed an allocating placement method which is using the proper orthogonal decomposition (POD) for temperature feature extraction, and then using the memetic algorithm (MA) for determining the minimum number of thermal sensors and the optimal sensor placement to track the temperature of transmission lines and accurately estimate the full conductor temperatures. The results show that this method can be made only needs the one-fifth of sensors to estimate the conductor temperature of entire transmission line spans with high accuracy. The average mean square error is less than 1. This method can provide the operating power system a dependable technique for thermal capacity increment and the evaluation of overload risk.

參考文獻


Alamaniotis, M., A. Ikonomopoulos, and L. H. Tsoukalas. 2012. Evolutionary Multiobjective Optimization of Kernel-Based Very-Short-Term Load Forecasting. IEEE Trans. Power Syst. 27(3): 1477–1484.
Beran, P., and W. Silva. 2001. Reduced-Order Modeling: New Approaches for Computational Physics. AIAA Paper No. 2001-0853. Reno, NV: AIAA.
Berkooz, G. 1992. Observations on the proper orthogonal decomposition. In "Studies in Turbulence', ed. 229-247. New York: Springer.
Callahan, P. M., and D. A. Douglass. 1988. An experimental evaluationof a thermal line uprating by conductor temperature and weather monitoring. IEEE Trans. Power Del. 3(4): 1960-1967.
Cheema, J., A. Clark, J. Kilimnik, C. Pavlovski, D. Redman, and M. Vu. 2011. Towards Smart Grid Dynamic Ratings. AIP Conf. Proc. 1373(1): 3-17.

延伸閱讀