透過您的圖書館登入
IP:18.222.111.134
  • 學位論文

利用固相微萃取技術分析個人保健用品中之人造麝香

Determinations of Synthetic Musks in Personal Care Products by Solid-Phase Microextraction

指導教授 : 蔡詩偉

摘要


人造麝香(Synthetic musk)近年來廣泛的運用於在各式個人產品(Personal care product)中以增添香味,目前美國環保署已將此物質歸類為高生產量類,人造麝香目前已經被研究發現有ㄧ些健康顧慮,硝基麝香被證實與光過敏反應及神經毒性有關,而不論在體內或體外實驗,部分麝香被認定與內分泌干擾物有關,因此,考慮到人造麝香的健康疑慮及麝香能被廣泛在環境及人體中偵測到,人造麝香在產品中的濃度是相當重要及需要被瞭解。   就目前大多數研究,麝香的分析方法皆採用傳統的萃取方式,相較於傳統使用大量溶劑,固相微萃取(Solid-phase microextraction, SPME)是一個理想的萃取工具,它結合萃取、濃縮及脫附成為單ㄧ簡單步驟,而在應用固相微萃取於分析產品中人造麝香濃度前,此方法可行性必須先被驗證。   固相微萃取結合氣相層析串聯質譜進行12 種麝香混合物的分析,樣品在萃取前會先以水稀釋,萃取時以65μm PDMS/DVB纖維進行頂空萃取,萃取溫度為70°C,萃取時間為40分鐘,經過熱托附後,會些許殘留效應,針對12種不同麝香物質,此方法可以達到高敏感度,多環麝香的偵測極限為0.002 ng/ml,硝基麝香偵測極限為0.05ng/ml;而檢量線也呈現良好的線性(>0.9)及精準度(RSD<10%),另外,標準添加相同濃度在不同樣品介質中,回收率為91%-135%。   此研究提供台灣個人產品濃度的資料,共有超過100個樣品進行麝香分析,結果發現高比例及高濃度的麝香出現在產品中,特別是佳樂麝香(Galaxolide HHCB), 吐納麝香(Tonalide, AHTN)及酮麝香(Musk ketone, MK),最高濃度可分別達到15555、13398及8324μg/g,高濃度的麝香可以在香水、身體乳液及頭髮修護產品類發現;每日皮膚暴露量由研究中各物質的平均值進行計算,每日總麝香皮膚吸收量為每天每公斤22.54μg,研究另外顯示,針對高出現頻率物質HHCB,香水和身體乳液為皮膚吸收主要暴露來源,占所有產品類別96%,而研究與其他暴露途徑(食入)比較,皮膚吸收暴露為人類暴露麝香的主要來源。   由於人造麝香在台灣環境分布的資料不足,未來還需進行研究不同環境介質的麝香濃度已進行更完整暴露評估,而在人造麝香的毒性資料及皮膚吸收率資料上也尚不足,這方面關於人造麝香健康效應及暴露評估有需要更多研究關注。

並列摘要


Synthetic musk is widely used as fragrances in many personal care products for enhancing scent and covering odor in recent years. Hence, the US Environmental Protection Agency (USEPA) classified polycyclic musk as one of the High Production Volume (HPV) chemicals. Synthetic musk is found to be related with several health concerns such as photo-allergic reactions and neurotoxicity. From in vivo and in vitro studies, there are evidences that some synthetic musks are considered as the potential endocrine disruptors. Concerning the possible heath effect and the fact that synthetic musk is commonly detected in the environment and human samples, the information for the distributions of synthetic musks in various personal care products should be acquired. Solid-phase microextraction (SPME) is an ideal tool by combining sampling, extraction, concentration and injection into a single process. However, to the best of our knowledge, studies are still limited regarding the analysis of synthetic musk in personal care products by SPME. As a result, SPME procedures need to be validated first before the determinations of synthetic musks in personal care products can be performed. 12 synthetic musk mixtures were analyzed by solid phase microextraction method (SPME) in multiple reaction monitoring (MRM) mode. The samples were first diluted by water before the extraction. The optimum extraction was performed at 70°C for 40 minutes with 300 rpm. The 65μm PDMS/DVB fiber was exposed to the headspace over the samples. A little carry-over effects was observed from the thermal desorption of the sample. The sensitivities of the method for different compounds were low enough to determine the concentrations from personal care products The linear range and method detection limits (MDL) of polycyclic musk compounds were 0.01 to 2 ng/ml, 0.002 ng/ml respectively and the linear range for nitro musk was 0.1 to 20 ng/ml, the MDL was 0.05 ng/ml. Good linearity and precision were presented and the recoveries ranged from 91%-135%. This study provided the first data of synthetic musks level in Taiwan, more than 100 products samples in Taiwan were determined for the concentrations of both polycyclic musk and nitro musk., it was found that the high occurrence percentage and high concentration in products samples especially for compounds HHCB (15,555μg/g), AHTN (13,398μg/g), DPMI (2,013μg/g) and MK (8,324μg/g). The high level of synthetic musks were mainly found in perfumer, body lotion and hair care products categories. Daily dermal exposure was estimated, based on the mean concentrations of musks, the daily exposure of total synthetic musks through application of personal care products was 22.54μg /kg/day. The results indicates that perfume and body lotion were major sources of human exposure, which occupied 96% for HHCB. Furthermore, compared to other exposure route, it strongly suggested that dermal absorption from personal care product was expected to be the main source of human exposure. For future work, further researches are acquired to obtain the data regarding the absorption rate, toxicity and concentration of synthetic musks in different environmental matric to assess health risk.

參考文獻


[1] Kraft, P. (2004). Aroma chemicals IV: musks. Chemistry and Technology of Flavors and Fragrances, 143.
[2] Zeeman, M., Auer, C. M., Clements, R. G., Nabholz, J. V., & Boethling, R. S. (1995). US EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations. SAR and QSAR in environmental research, 3(3), 179-201.
[3] Heberer, T. (2002). Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta hydrochimica et hydrobiologica, 30(5‐6), 227-243.
[4] Rimkus, G. G. (1999). Polycyclic musk fragrances in the aquatic environment. Toxicology letters, 111(1), 37-56.
[5] Nakata, H. (2005). Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters. Environmental science & technology, 39(10), 3430-3434.

延伸閱讀