透過您的圖書館登入
IP:3.141.31.209
  • 學位論文

有機無機混合式太陽能電池的製備以及P型氧化鋅薄膜的製備

Fabrications of Organic/Inorganic Hybrid Solar Cells and Fabrications of P Type Zinc Oxide Thin Film

指導教授 : 林清富

摘要


本篇論文的第一部分(第一章至第三章)當中,我們將詳盡的描述有機無機太陽能電池研究。首先,我們先進行n型的矽奈米線的蝕刻製程,並藉由特殊的轉移方法,將矽奈米線轉移至P3HT高分子薄膜上方,之後接著製作P3HT/SiNWs以及P3HT/SiNWs/PCBM等兩種高分子/無機半導體共軛結構的太陽能電池。在P3HT/SiNWs結構的有機無機太陽電池之中,我們在矽奈米線與P3HT介面之處發現載子經過照光後分離的情形,量得光電轉換效率為0.36%,並且得到開路電壓為0.39V,短路電流為2.358(mA/cm²),以及填充因子為38.8%。之後,我們並更進一步的在矽奈米線上方旋塗PCBM薄膜,使有機無機主動層結構成為P3HT/SiNWs/PCBM,藉由矽奈米線之高電子傳導性質及吸收可見光特性,來增加元件整體之光電轉換效率及光學性質。在P3HT/SiNWs/PCBM結構的有機無機太陽電池之中,P3HT薄膜經過照光之後,能夠在與矽奈米線以及PCBM接觸之兩種介面產生載子分離,比起上述第一種有機無機混合P3HT/SiNWs結構,其光電轉換效率因此而提昇至0.7%,效率提昇的原因為整體元件的導電率增加,導致短路電流增加,並且得到開路電壓為0.52V,短路電流為3.7(mA/cm²),以及填充因子為35.8%。 於本篇論文的第二部分(第四章)當中,將介紹在P型氧化鋅薄膜上的研究成果。我們將提供兩種以溶液旋塗為主的製作方法來製備p型氧化鋅薄膜。第一種製程為同時在氧化鋅溶液中摻雜氮原子(N)以及鋁(Al)原子,鋁原子能夠增加氮原子取代氧原子的能力。得到品質最好的p型氧化鋅薄膜,其製程參數為使用氨原子與鋅原子與鋁原子的比例為三比一比零點零一(N:Zn:Al=3:1:0.01),其p型氧化鋅薄膜的電洞濃度提昇至9.5×1015, 而電阻率下降至29.1(Ohm-cm)。第二種製程為在氧化鋅溶液中摻雜五氧化二磷(P2O5)粉末,經過快速熱退火以及準分子雷射的熱能量處理來形成p型氧化鋅薄膜。品質最好的p型氧化鋅薄膜,其製程參數為經過快速熱退火800°C熱處理,得到的電洞濃度為5.36×1015, 而電阻率則為0.082(Ohm-cm)。

並列摘要


In the first part of the work (chapter 1 to chapter 3), the fabrications and characteristic of organic/inorganic hybrid solar cell were detailed discussed. Wet-etching n type silicon nanowires were combined into poly(3-hexylthiophene) (P3HT) to form the structure of poly(3-hexylthiophene) (P3HT)/SiNWs organic/inorganic hybrid solar cell. In P3HT/SiNWs structure, we observed the photoinduced charge transfer in P3HT-SiNWs bulk heterojunctions and got 0.36% power conversion efficiency from J-V characteristics of devices under (A.M.1.5) simulated solar illumination (100mW/cm2). Second, we fabricated the structure of P3HT/SiNWs/PCBM organic/inorganic hybrid solar cell by integrating SiNWs into P3HT/[6,6]phenyl-C61-butyric acid methyl ester) (PCBM) bilayer structure. The P3HT/SiNWs/PCBM device not only has the higher charge carrier mobility of inorganic semiconductors than organic materials but also has two separate channels for efficient electron and hole transport, causing its power conversion efficiency increased from 0.36% to 0.7%. Silicon nanowires, acting as an electron transport, can improve the carrier mobility and increase the absorption from visible light spectrum of the device, reflected in the enhancement in power conversion efficiency. In the second part of the work (chapter 4), we reported two method of the solution based fabrications of p type Zinc Oxide thin films. From the first method, the p-ZnO thin films were prepared by spin coating ZnO solutions doped with nitrogen and little amount of Aluminum atoms. From the second method, the p-ZnO thin films were prepared by spin coating ZnO solutions doped with P2O5 powders on the Si substrate. Those samples then progressed in high temperature treatments followed by rapid thermal annealing (RTA) and Excimer Laser to form p-ZnO thin films.

參考文獻


[2] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl, Phys. Lett., 90, (2007)
[5] H. Hoppe, N.S. Sariciftci, “Organic solar cells:an overview”, J. Mater.
[7] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing”, Appl. Phys. Lett. 79, pp. 2996 (2001);
[8] C.J. Brabec, S.E. Shaheen, C Winder, N.S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett. 80, pp. 1288 (2002);
[10] P. Schilinsky, C. Waldauf, C.J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors”, Appl. Phys. Lett. 81, pp.3885 (2002)

延伸閱讀