透過您的圖書館登入
IP:18.117.107.90
  • 學位論文

有機高分子與無機半導體混合式太陽能電池的製備

Fabrications of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells

指導教授 : 林清富

摘要


本論文的研究主要在於有機無機混成的太陽能電池製備。在本篇論文的第一部分當中,我們以乾式蝕刻的方式來製作砷化鎵奈米線。而砷化鎵奈米線是以感應耦合式電漿蝕刻來製備,並利用二氧化矽奈米粒子鋪在砷化鎵基板上形成單層遮罩以進行蝕刻。為了在砷化鎵基板上均勻地形成單層遮罩,使用的溶液濃度、溫度以及對砷化鎵基板的介面活性劑處理是很重要的。有了在砷化鎵基板上形成的單層遮罩,我們利用感應耦合式電漿蝕刻來製作出高選擇比的砷化鎵奈米線。由於我們利用旋塗的技術取代耗時且昂貴的電子顯影技術來製作蝕刻遮罩,所以我們可以蝕刻出大面積的砷化鎵奈米線。而且砷化鎵奈米線的長度以及直徑,可以藉由蝕刻的時間和二氧化矽奈米粒子的大小來控制。接著藉由特殊的轉移方法,將砷化鎵奈米線轉移到P3HT:PCBM所覆蓋的玻璃基板,製作成排列整齊砷化鎵奈米線混成太陽能電池。 於本篇論文的第二部分,我們利用溶液製程的方式取代熱蒸鍍,將金屬氧化物氧化鎳(稱作電子阻擋層/電動傳輸層)旋轉塗佈在有機層上面,利用其較高的最低分子未佔據軌域,來阻擋電子直接傳輸到陽極,與收集到陽極的電洞進行復合,減少元件的漏電流產生增加元件的填充因子,進而提升反向結構的氧化鋅半導體與有機高分子混成之太陽能電池效率。我們的結果展示利用氧化鎳大大增加了並聯電阻,並聯電阻從502 W-cm2增加到632 W-cm2有效地抑制了漏電流,提升元件的短路電流以及填充因子,填充因子從53 %增加到59 %,使得太陽能電池效率有所提升,光電轉換效率從3.3 %增加到3.8 %。除此之外,在有機層上面旋轉塗佈氧化鎳,元件的光電轉換效率在第六天達到最大值3.8 %,其在大氣下的穩定性相當得不錯,經過60天後的效率仍然有2.91%。

並列摘要


In this study, we focus on fabrications of organic polymer/Inorganic semiconductor hybrid solar cells. In the first part of the work, large-area GaAs nanowires are fabricated using SiO2 nanoparticles monolayer as the etching mask. SiO2 nanoparticles monolayer is spin-coated on the GaAs substrate. To obtain a uniform monolayer of SiO2 nanoparticles across the substrate, raised temperature, adequate solution concentration, and the substrate treated with a solvent for interface activation are required. With the monolayer of SiO2 nanoparticles as the etching mask, the GaAs substrate is etched by Induced-Coupled Plasma Reactive Ion Etcher to form GaAs nanowires with a high aspect ratio. The diameter and length of GaAs nanowires can be controlled by the size of SiO2 nanoparticles and etching time of ICP-RIE. Then, we transferred GaAs nanowires onto the glass substrate with the P3HT:PCBM. We combined GaAs nanowires with P3HT:PCBM to fabricate conjugated polymer-based organic solar cells. In the second part of the work, we used solution process to replace deposition to spin NiO layer on polymer. NiO layer acts as an interfacial electron-blocking layer/hole-transporting layer (EBL/HTL). Utilizing its higher LUMO (lowest unoccupied molecular orbital) could block electron leakage to anode to recombine with hole. The leakage current is reduced to improve the power conversion efficiency of inverted structure with organic polymer/ZnO semiconductor hybrid solar cells. Our investigations show that utilizing NiO as an interfacial layer increases the shunt resistance from 502 W-cm2 to 632 W-cm2 , the filling factor from 53 % to 59 % , and the power conversion efficiency from 3.3% to 3.8%. Besides, the stability in the air of cells with NiO film has good performance. After 60 days, the power conversion efficiency of the cell reaches constant with 2.91%.

參考文獻


[29] 黃昭睿,矽奈米結構與矽發光效率之關係研究,國立台灣大學光電工程學研 究所碩士論文,2004.
[3] K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, “Low-band gap polymers for photovoltaic applications”, Thin Solid Films 451-452, P.P. 7-11, (2004).
[4] Kenji Okumoto, Kenjiro Wayaku, Tetsuya Noda, Hiroshi Kageyama, Yashuhiko Shirota, ”Amorphous molecular materials: charge transport in the glassy state of N/N’ –di(biphenylyl) –N,N’ –diphenyl-[1,1’ -biphenyl] -4,4’ -diamines ”, Synthetic Metals ,111-112, p.p. 473-476 ,(2000).
[6] H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, “Stability and photo degradation mechanisms of conjugated polymer/fullerene plastic solar cells”, Solar Energy Materials & Solar Cells ,61,p.p. 35-42,(2000).
[8] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl, Phys. Lett., 90, (2007)

延伸閱讀