透過您的圖書館登入
IP:3.133.123.193
  • 學位論文

碳化矽及金屬摻雜氧化鋅之同步輻射X光吸收頻譜相關研究

Synchrotron Radiation X-ray Absorption Spectroscopy Related Studies on SiC and Metal-Doped ZnO

指導教授 : 馮哲川
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


同步加速器光源是二十一世紀尖端科學研究不可或缺的實驗利器,已廣泛應用在材料、生物、醫藥、物理、化學、化工、地質、考古、環保、能源、電子、微機械、奈米元件等基礎與應用科學研究,因而被稱為現代的「科學神燈」。 本文主要討論同步輻射技術在半導體材料上的研究,共分五個章節,第一章為同步輻射的介紹,包含何謂同步輻射、同步輻射的歷史、產生源、光源的特性、如何產生同步輻射?以及同步輻射的應用。第二章為本文中使用到的實驗設備以及實驗原理的介紹,包含光激發螢光頻譜、拉曼散射、X光吸收光譜,還有X光吸收光譜數據處理的詳細過程。 第三章和第四章以同步輻射X光吸收光譜為主,利用軟體去計算出半導體材料-碳化矽和鎂摻雜氧化鋅,在不同的摻雜濃度與生長溫度時所產生的鍵長變化。接著再結合螢光與拉曼光譜和X光繞射光譜去做比對。經由X光吸收光譜在原子短程結構及電子組態上之優點,與傳統XRD長程有序分析等結果相互配合,可使我們更加了解奈米材料之結構特性。而第五章主要是結合拉曼散射、X光光電子能譜與X光繞射光譜,再加上電性的分析,去探討鋁摻雜氧化鋅再不同的生長溫度和不同的生長環境下所造成材料結構的差異。

並列摘要


During the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, archeology, environmental science, energy, electronics, micro-mechanical engineering, and nanotechnology. For this reason synchrotron light sources have been coined "magic lamps of science". This thesis will focus on synchrotron radiation technology studies of semiconductors and heterostructures. It consists of five chapters: in chapter one, we introduce the synchrotron radiation, including the explanation, history, sources, properties, production and applications of synchrotron radiation. In chapter two, the experimental instruments and the theoretical backgrounds have been introduced, including Photoluminescence (PL), Raman scattering, and X-ray absorption spectroscopy (XAS). The data treatment of X-ray absorption spectroscopy is also introduced in chapter two. In chapter three and four, X-ray absorption fine structure has been employed to study the bond length around in Silicon Carbide (SiC) and Magnesium-doped Zinc Oxide (MgZnO). Combined Photoluminescence (PL), Raman scattering and XRD techniques, the influence of different growth temperature and condition on structure could be studied. Therefore, by combining Raman measurement and extended X-ray absorption fine structure (EXAFS) analysis, both techniques can provide complementary information to reveal the change inside the structure caused by different growth condition. In chapter five, Raman spectroscopy combined X-ray photoelectron spectroscopy (XPS), XRD and electrical properties were also used to study the difference of structure in different growth condition of Aluminum-doped Zinc Oxside (Al-ZnO).

參考文獻


[2.1] Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, O John Wiley & Sons Ltd, Chichester, 2000, pp. 9209–9231.
[2.2] Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007).
[2.4] Kuo, Ting-Wei, “Optical Properties and Material Studies of Different InGaN/GaN Multi-Quantum Well Structures Light Emitting Diode Wafer”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008).
[2.8] T.D. Mishima, M.B. Santos, J. Vac. Sci. Technol., B 22, 1472 (2004).
[2.12] T.D. Mishima, M.B. Santos, J. Vac. Sci. Technol., B 22, 1472 (2004).

延伸閱讀