透過您的圖書館登入
IP:3.138.110.119
  • 學位論文

以體外實驗方式鑑定自由基對肺部細胞產生的氧化壓力指標-可行性探討

Identifying the marker of oxidative stress by an in vitro exposure to free radical-A feasibility study

指導教授 : 馬一中

摘要


過去有許多呼出氣體的研究指出,當體內細胞受到活性含氧物種(reactive oxygen species, ROS)或是自由基(free radical)攻擊並產生所謂的氧化壓力時,可能會造成細胞膜上的脂質過氧化,使細胞膜釋放出特定種類的揮發性有機物質,而這些揮發性有機物質則會透過呼吸作用而排出,因此呼出氣體可以作為診斷疾病或是身體受到氧化壓力的依據。不過根據過去呼出氣體研究的特點,仍有許多應用上的困難,所以,這方面氧化壓力的證據,應透過更多不同方面的實驗來支持,而讓細胞暴露自由基等物質來進行體外細胞實驗也許是一種可行的方式。 有鑑於此,本研究的目的是希望在找出暴露自由基的氧化壓力指標之前,進行自由基產生系統的建立與分析條件確認。要進行這樣的實驗,需要有穩定且可量化的自由基來源,以供後續的體外細胞實驗使用。在眾多自由基種類中,氫氧自由基為反應性最強的一種自由基,所以本次實驗選擇它作為實驗中的氧化壓力來源。氫氧自由基的產生與偵測方式有許多種,而本實驗利用Fenton reaction 和UV紫外光(λ=184.9nm)光解水分子等兩種方式產生出氫氧自由基。偵測的方式則是利用化學冷光法以及芳香烴羥化的方式進行氫氧自由基的捕捉,最後利用自由基測定儀與氣相層析質譜儀(GC/MS)進行分析。 在Fenton reaction的部分,雖然有偵測到氫氧自由基的訊號,但液態的氫氧自由基對細胞暴露可能會產生額外的傷害,無法確實了解氫氧自由基造成的影響;另一方面,在芳香烴羥化實驗的中測試了不同捕捉方式、採樣時間、流速、水楊酸濃度等因子,觀察對氫氧自由基產生量的影響,並找到最佳化的產生條件,但即使測試了不同的條件,仍然沒有觀察到氫氧自由基的訊號;反倒是觀察到了水楊酸在進行捕捉的過程中,會因為上述條件的作用,影響到水楊酸的回收率,其差異也都達到了統計上的顯著差異(p<0.05)。另外,我也利用了這個系統來測量香菸主流煙中氫氧自由基的含量,不過仍然沒有測量到氫氧自由基的訊號。 在本次研究中,氫氧自由基的生成、捕捉與偵測系統都仍有實際應用上的困難,也在研究的過程當中發現了許多問題需要改善,這些問題在過去並沒有相關的研究並沒有被提及。因此,透過這次研究的結果提出了一些建議與結論,希望可以改善這些問題並建立一套更完善的系統以供後續的實驗使用。

並列摘要


Breath analysis can provide clinically useful information for the diagnosis of oxidative stress and diseases. Exposure to reactive oxygen species (ROS) or free radicals will cause harmful effects such as lipid peroxidation and produce volatile hydrocarbons like ethane and pentane in low levels in the breath air. However, there are some obstacles in application. Therefore, in vitro cell-culture study perhaps can provide more sufficient evidences to prove the relationship. Before assessing oxidative stress, it’s important to know how many radicals involved. Part of the objective in my study is to establish a radical generation system for the measurement and quantitation of hydroxyl radical. The main purpose is to setup a radical generation and trapping system for the subsequent in vitro cell-culture study. Because the hydroxyl radical has an extremely short half-life and a high reacting rate, it was chosen in my research. For radical generation, I used Fenton reaction and the high-energy UV (λ=184.9nm) ionization of humid air flow. The radical was trapped at the outlet instantly and then analyzed using gas chromatography-mass spectrometry. In Fenton reaction part, hydroxyl radicals can be generated stably, but the liquid type radicals may cause extra damage and have difficulties in further application. In aromatic hydroxylation part, I have tried various trapping strategies, including exposure times, flow rates and concentrations of salicylic acid to get the optimizing condition, but all test fail to show any signal from hydroxyl radical in any kind of condition. However, the recovery of salicylic acid was gradually decrease in some condition, and reached the statistical significance. I also tried to explore a number of hydroxyl radicals in the main stream of cigarettes, but the hydroxyl radicals were still not detected. The problem of failure detection was discussed in detail. Even though the system is not successfully working in this study, but I find out some problems and the reasons of failure detection. These issues had not been mentioned in the past. In view of this, I made some suggestions and conclusions for solving these problems in the further research, and hope the system can be apply to in-vitro studies in the future.

參考文獻


行政院衛生署國民健康管理局 (2007). 民國96年中老年人身心社會生活狀況長期追蹤(第六次)調查.
行政院衛生署國民健康管理局 (2007). 民國96年成人吸菸行為調查.
林冠宇 (2004). "偵測呼出氣體中所含揮發性有機物作為指標在環境衛生上的應用──可行性探討." 國立台灣大學公共衛生學院環境衛生研究所碩士論文.
陳泳鋼 (2010). "空氣污染與學童呼出氣體及肺功能之相關性探討." 國立台灣大學公共衛生學院環境衛生研究所碩士論文.
Aghdassi, E. and J. P. Allard (2000). "Breath alkanes as a marker of oxidative stress in different clinical conditions." Free Radical Biology & Medicine 28(6): 880–886.

延伸閱讀