透過您的圖書館登入
IP:3.137.170.183
  • 學位論文

腰椎微傷內固定手術用之X光影像電腦輔助系統之開發

Development of a Fluoro-Based Computer-Aided System for Mini-Open Lumbar Internal Fixation Surgery

指導教授 : 王兆麟

摘要


背景:傳統的腰椎內固定手術(Lumbar internal fixation surgery)方法是將椎弓根螺釘(Pedicle screw)植入椎骨的椎弓根,並將上下節的椎骨用連接桿(Rod)固定。傳統手術所需的傷口較大,切除軟組織較多,容易造成術中感染,術後也會因軟組織鈣化而引起背部酸痛等的併發症。微傷內固定手術(Mini-open internal fixation surgery)則是針對以上缺點所發展出來的新一代手術方法。微傷內固定手術的好處是傷口較小,而且失血較少,恢復較快。但因此手術方法在術中使用C-arm不斷拍攝X光影像來確認椎弓根螺釘的植入位置與方向,會使得手術中的醫護人員與病人接受較多的輻射劑量,因此如何降低術中的輻射劑量就成為了一個重要的課題。 研究目的:本研究之目的在於開發一套適用於腰椎微傷內固定手術用之影像導航系統,利用病人在術中所拍攝之X光影像做導航,僅利用一張X光影像就可找到椎弓根螺釘植入的位置與方向,降低醫護人員與病人接受之的輻射劑量。 材料與方法:本研究分四部分:第一部分為導航軟體之開發,其功能包括影像擷取、註冊、器械導航。註冊方法使用「正射影與比例縮放迭代法姿態估計」 (Pose from Orthography and Scaling with Iterations, POSIT)演算法。第二部分為手術器械設計,包含電燒刀與攻牙錐,手術器械上會裝設動態參考板,以供紅外線感測器追蹤並計算手術器械尖點的位置與方向。第三部分為系統誤差測試,其誤差包含註冊誤差與導航誤差,註冊誤差為POSIT演算法所產生的誤差,導航誤差為手術器械位置與方向投影的誤差,本研究製作標準測試假體(Testing phantom)並拍攝X光影像評估系統誤差。第四部分為手術導航模擬,利用脊椎假體模型模擬手術流程。本系統使用Northern Digital Inc.公司開發之Polaris VicraR紅外線感測器系統以及National Instruments公司所提供的LabVIEW開發環境。 實驗結果:本研究達成拍攝一張X光影像即可術中導航的目的,針對手術器械位置與方向的誤差測試部分,電燒刀之位置誤差為0.94(0.29)釐米、角度誤差為1.97(1.15)度;攻牙錐之位置誤差為1.06(0.38)釐米、角度誤差為1.65(1.00)度,整體系統之註冊誤差為0.77(0.45)釐米、位置誤差1.00(0.34)釐米、角度誤差為1.79(1.07)度。脊椎假體測試之註冊誤差為0.79釐米、位置誤差為1.39釐米、角度誤差為1.57度,本系統與目前市售之X光影像導航系統所產升的誤差接近。 結論:經本研究所開發之影像導航系統,可有效的減少醫師與病人所接受的輻射線劑量。系統之位置誤差約為1釐米,角度誤差約2度,未來應可應用於微傷內固定手術之臨床應用。

並列摘要


Objective. The purpose of this study is to develop a computer-aided fluoroscopy navigation system for mini-open lumbar internal fixation surgery, which provides real-time navigation based on one anteroposterior fluoroscopic image without tracking the C-arm machine. Introduction. Pedicle screws are used in lumbar internal fixation surgery. Traditional surgery procedures create large wounds and excessive resection on soft tissue. Postoperative back pain occurs due to broad tissue calcification. Due to these disadvantages, the mini-open lumbar internal fixation surgery is developed recently. During the mini-open surgery, intensive C-arm fluoroscopic images are taken by surgeons to estimate the pedicle screw trajectories within a small incision wound. As a result, surgeons and patients are exposed to a great radiation dosages during the surgery. A computer-aided fluoroscopy navigation system for mini-open lumbar internal fixation surgery may be helpful to decrease radiation hazard, reduce surgery time and increase success rate of pedicle screw placement. Material and method. An optical motion detection system (Polaris vicraR, Northern Digital Inc., Canada) and a graphic programming language (LabVIEW, National Instrument, USA) were used to develop the navigation system. Single image registration was achieved by POSIT algorithm. Dynamic reference frame (DRF) with specific geometric patterns of light-reflecting balls were designed for patient and surgical instruments (i.e. an electrocautery and a tapper) to represent their global positions. The optical motion detection system would track the DRFs intraoperatively. The alignment of surgical instruments relative to the patient was real-time displayed on the patient’s anteroposterior fluoroscopic image. The tip error (mm) and direction error (°) of surgical instruments guided by this navigation system were measured with testing phantoms and a spine phantom. Results. The mean tip error was 0.94(0.29) mm and 1.06(0.38) mm for the electrocautery and the tapper, respectively. The mean direction error was 1.97(1.15) ° and 1.65(1.00) ° for the electrocautery and the tapper, respectively. For this navigation system, the registration error was 0.77(0.45) mm, the mean tip error was 1.00(0.34) mm, and the mean directional error was 1.79(1.07) °. For spine phantom testing, the registration error was 0.79 mm, the mean tip error was 1.39(0.38) mm, and the mean direction error was 1.57(0.16) °. The error of this system is close to the commercial image navigation system. Conclusion. A fluoroscopic-based image navigation system for mini-open spinal internal fixation surgery is successfully developed, which allows registration using one intraoperative anteroposterior fluoroscopic image without tracking the C-arm machine. It can reduce radiation dose during the surgery significantly. The guidance error of this system is within the tolerance of spinal internal fixation surgery.

參考文獻


1. Sasso RC and Garrido BJ. Computer-assisted spinal navigation versus serial radiography and operative time for posterior fusion at L5-S1. J Spinal Disord Tech 2007;20:118-122.
2. Lonstein JE, Denis F, Perra JH, et al. Complications associated with pedicle screws. J Bone Joint Surg Am 1999;81:1519-1528.
3. Castro WH, Halm H, Jerosch J, et al. Accuracy of pedicle screw placement in lumbar vertebrae. Spine 1986;21:1320-1324.
4. Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plate. Clin Orthop 1986;203:19-33.
5. CakeChooser. Available from:

延伸閱讀