透過您的圖書館登入
IP:3.138.174.174
  • 學位論文

電子散熱模組中之氣泡泵性能分析與實驗研究

The Performance and Experimental Investigation of Bubble Pump of Electronic Cooling System

指導教授 : 陳希立

摘要


本研究以實驗的方式探討電子散熱模組中氣泡泵於不同運轉條件下之泵浦以及熱傳性能,氣泡泵電子散熱模組係利用氣泡泵吸收發熱源熱量達到散熱的目的,同時推動散熱模組中工作流體的循環。本研究設計出垂直與水平擺放兩種氣泡泵電子散熱模組,首先垂直式氣泡泵電子熱散模組主要由氣泡泵、冷凝器、升流管段、降流管段和儲水槽組成的封閉迴路系統,並以甲醇作為工作流體。垂直式電子散熱模組主要是由氣泡泵吸收熱源熱量沸騰產生氣泡後,導致升、降流管段之間有密度差或是空泡分率差,再藉由重力來驅動系統中工作流體的循環,當兩管段之間的密度差或是空泡分率差越高,系統流量亦越大,同時藉由不同的沸騰結構來提升氣泡泵的熱傳性能。在垂直式散熱模組的實驗部分,針對不同的沸騰底板型式、氣泡泵入口工作流體溫度和發熱源加熱瓦數進行測試,並對測試結果進行分析。藉由實驗數據與可視化的觀測可將氣泡泵內的現象分為自然對流、過冷沸騰和飽和沸騰三種型式。 在自然對流的條件下,各式沸騰底板之系統流量均約在27 ml/min以下,但沸騰底板3(沸騰底板3上有鰭片結構,與無鰭片設計之沸騰底板1與2相比,增加約六倍的熱傳面積)之底板溫度較其他底板約低5至9℃,熱對流係數亦約為其他底板的六分之一,而氣泡泵熱阻與沸騰底板1、2相比,平均約減少36%。在過冷沸騰的條件下,各式沸騰底板之系統流量隨著加熱瓦數與氣泡泵入口工作流體溫度的增加而提升,其流量範圍均約在40至174 ml/min之間。而沸騰底板3仍藉由較大的熱傳面積擁有較低的底板溫度,約低於其他底板3到7℃之間,熱對流係數依舊約為其他底板的六分之一,氣泡泵熱阻與沸騰底板1、2相比則平均約減少19%。 在飽和沸騰的條件下,氣泡泵入、出口工作流體皆在飽和溫度,此時三種底板之系統流量在加熱瓦數30 W到40 W之間會有一峰值產生,最大流量均約為200 ml/min,並且當加熱瓦數超過40 W流量便開始緩慢減少。同時在此條件下,熱傳以潛熱熱遞為主,所以沸騰底板3的底板溫度便不再因為有鰭片而明顯低於其他底板,約低於其他底板1到3℃之間,熱對流係數仍然約為其他底板的六分之一,氣泡泵熱阻與沸騰底板1、2相比則平均約減少13%。另外在飽和沸騰的條件下可以計算氣泡泵出口乾度,由於在飽和沸騰的狀態下,三種底板的氣泡泵性能相近,所以泵浦出口乾度依照不同的加熱瓦數均約在0.005至0.032之間,而本研究藉由乾度並透過氣泡泵迴路系統的壓降分析來計算氣泡泵驅動壓力,並繪製氣泡泵性能曲線,在加熱瓦數80 W時,有最大的泵浦驅動壓力962 Pa,而流量約為167 ml/min。 而水平式電子散熱模組主要是由氣泡泵和儲水槽組成的開放式系統,以方便在實驗過程中觀測其運作,並同樣以甲醇作為工作流體。水平式電子散熱模組同樣是由氣泡泵吸收發熱源熱量沸騰產生氣泡後,藉由擴散器型式的流道結構,讓氣泡成長時氣泡的體積變化來推動泵浦內的工作流體,並且氣泡脫離沸騰表面後將在氣泡泵的上部冷凝為液態,借此控制氣泡的成長頻率,當氣泡產生的頻率越高,泵浦的流量越大。在水平式散熱模組的實驗部分,針對兩種擴散器型式的流道結構和不同的發熱源加熱瓦數進行測試,並對測試結果進行分析。由實驗結果可知氣泡泵流量隨著加熱瓦數的增加而增加,並且單一擴散器流量略高於雙擴散器,在加熱瓦數為35 W時,單一擴散器有最大流量約18 ml/min。而單一擴散器與雙擴散器兩者沸騰表面相同,由於單一擴散器流量較高,因此其氣泡泵底板溫度與熱阻略低於雙擴散器之氣泡泵。

並列摘要


This study experimentally investigates the bubble pump performance of electronic cooling system. The vertical-type and horizontal-type bubble pumps are investigated. In the first part, the bubble pump is placed vertically which is a closed-loop system. This closed-loop system consists of a vertical flat chamber as a bubble pump, a condenser, a rising tube, a falling tube and a reservoir, and is completely filled with working fluid. As the bubble pump absorbs heat, the working fluid density differences between two vertical closed-loop tubes induce flow motion. The effects of the input heating power, inlet fluid temperature and boiling surface of the bubble pump are experimentally determined. Three heat transfer regions describe the heat transfer mechanisms inside the pump, such as natural convection, subcooled boiling and saturated boiling. A theoretical pressure drop model of the entire loop is constructed to describe the bubble pump performance. The results indicate that the bubble pump performs better at saturated boiling conditions, the experimental result of the maximum flow rate is 200 ml/min at 30 W, and the maximum driving pressure of the pump is 962 Pa at 80 W. Besides, the results show that a sudden contraction between the pump chamber and the rising tube, inducing a contraction pressure drop inside the pump chamber, will reduce the system flow rate. The results also show that the fins on the boiling surface can effectively diminish the center temperature of the lower plate and pump thermal resistance. The fins on the boiling surface can averagely reduce 19% and 13% with natural convection and subcooled boiling conditions, respectively. In the second part, the bubble pump is placed horizontally which is an open system. This open system consists of a horizontal flat chamber as a bubble pump and a reservoir. As the bubble pump absorbs heat, the working fluid starts boiling and produces bubbles to push flow motion. The effects of the input heating power and the structure of diffuser on the boiling surface of the bubble pump are experimentally determined. The results indicate that the bubble pump performs better with single diffuser and the maximum flow rate is 18 ml/min at 35 W. Besides, the same structures of boiling surfaces make the similar thermal performance.

參考文獻


[49] 陳柏仁,「單邊擺動壓電式薄膜泵之設計與應用分析」,博士論文,國立台灣大學機械工程學研究所,民國九十七年九月(2008)。
[61] 蕭惟哲, 「兩相封閉迴路式熱虹吸散熱系統」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)
[1] “Assembly and Packaging,” in The International Technology Roadmap for Semiconductors, 2005 ed: Semiconductor Industry Association, 2005.
[3] R.C. Jaeger, “Development of Low Temperature CMOS for High Performance Computer Systems,” IEEE International Conference on Computer Design: VLSI in Computers, pp. 128-130, 1986.
[4] Y. Taur and E.J. Nowak, “CMOS Devices Below 0.1 pm: How High Will Performance Go”, Electron Devices Meeting Technical Digest, pp. 215-218, 1997.

延伸閱讀