透過您的圖書館登入
IP:3.22.224.16
  • 學位論文

二氧化碳龍捲風式常壓噴射電漿於石墨烯-氧化錫超級電容之應用

Applications of CO2 tornado-type atmospheric pressure plasma jet in reduced graphene oxide-tin oxide supercapacitor

指導教授 : 陳建彰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用常壓電漿(Atmospheric Pressure Plasma Jet, APPJ)合成碳材-金屬氧化物複材並用於儲能元件。首先在碳布電極上網印石墨烯-氯化亞錫(rGO-SnCl2)前驅體,並透過大氣電漿製備石墨烯-二氧化錫(rGO-SnO2)電極,最後組裝成對稱型超級電容。實驗比較了氮氣及二氧化碳電漿製程的差異性。 第一部分先使用穩定且成熟的氮氣常壓噴射電漿來進行,並證實複合材料用於儲能的可行性。透過各項分析得以證實最佳製程時間僅需300秒。在材料分析上,由掃描式電子顯微鏡發現石墨烯表面有大量奈米顆粒形成,因此更進一步透過X射線光電子能譜儀鑑定材料化學結構,證實奈米顆粒是來自於二氧化錫的形成,X射線繞射儀也可見二氧化錫的晶相。亦進行了能量色散X光譜儀、拉曼光譜儀等完整材料分析。在實際應用於軟性超級電容時,以定電流充放電,電流0.25 mA的條件量測,其面積電容值達47.52 mF/cm2。在Trasatti plots分析中,電雙層電容(EDLC)及擬電容(PC)貢獻各佔約50%。 證實了氮氣常壓電漿於材料製備的可行性後,接著使用二氧化碳龍捲風式常壓噴射電漿來製備rGO-SnO2電極。在顯微分析及化學鑑定有類似於氮氣電漿實驗的結果。而在電化學分析中,本部分聚焦於電漿系統對碳布及石墨烯-二氧化錫石墨烯-二氧化錫超級電容個別的影響。以指數率分析可見碳布表現出電雙層電容行為;石墨烯-二氧化錫表現出擬電容行為。碳布的儲能效果較不明顯,主要仍來自石墨烯-二氧化錫複合材料,製備的軟性超級電容之面積電容值達37.17 mF/cm2,且保持理想的穩定性,也成功證實驅動外部發光二極體的可行性。

並列摘要


Atmospheric pressure plasma jet (APPJ) was used to synthesize carbon-metal oxide that were used in flexible supercapacitor in the study. First, the reduced graphene oxide and tin chloride (rGO-SnCl2) precursor was screen-printed on carbon cloth. Next, rGO-SnO2 electrodes were fabricated by APPJ and applied to symmetric supercapacitors. The study mainly compared the difference of rGO-SnO2 supercapacitors fabricated by nitrogen and carbon dioxide APPJs. In first part, the rGO-SnO2 was synthesized by nitrogen APPJ and applied to supercapacitors. The optimal processing time is only 300 s. A large number of nanoparticles formed on the surface of graphene nano-flakes in the scanning electron microscopy images. The chemical compositions of the nanoparticles was further identified through X-ray photoelectron spectroscopy, confirming the formation of SnO2. The X-ray diffraction also showed the presence of the crystal structures of SnO2. Material analysis such as energy dispersive X-ray spectroscopy and Raman spectrometer were also conducted. In galvanostatic charging-discharging, the rGO-SnO2 supercapacitors showed an areal capacitance of 47.52 mF/cm2 with a constant current of 0.25 mA. In Trasatti plots, contribution of the electric double layer capacitance (EDLC) to pseudo capacitance (PC) was ~50%. After confirming the feasibility of synthesizing rGO-SnO2 by nitrogen APPJ, the carbon dioxide tornado APPJ was experimented in the preparation of rGO-SnO2. Carbon dioxide tornado APPJ synthesized rGO-SnO2 showed similar properties.The experiment focused on the individual effects of the plasma processing on carbon cloth and rGO-SnO2 supercapacitors using electrochemical analysis. The carbon cloth showed the behavior of EDLC, and the rGO-SnO2 showed the behavior of PC in the analysis of power law. The charge storage in carbon cloth was insufficient. The performance of capacitance was mainly attributed by rGO-SnO2. The areal capacitance value of the rGO-SnO2 supercapacitors reached 37.17 mF/cm2. The fabricated rGO-SnO2 supercapacitors can successfully be used to power up a light-emitting diode.

參考文獻


1. Chu, S., Y. Cui, and N. Liu, The path towards sustainable energy. Nature materials, 2017. 16(1): p. 16-22.
2. Singh, S., et al., Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews, 2015. 51: p. 623-633.
3. Weigelt, C. and E. Shittu, Competition, regulatory policy, and firms’ resource investments: The case of renewable energy technologies. Academy of Management Journal, 2016. 59(2): p. 678-704.
4. Yan, J., et al., Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014. 4(4): p. 1300816.
5. Yang, P., et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano letters, 2014. 14(2): p. 731-736.

延伸閱讀