透過您的圖書館登入
IP:3.138.192.146
  • 學位論文

毫米波放大器設計及熱效應分析與量測

Design of Millimeter Wave Amplifiers and Analysis and Measurement of Thermal Effect

指導教授 : 王暉

摘要


在這論文中介紹了一個應用於第五代手機通訊,使用了0.15微米砷化鎵假型高速電子遷移率電晶體(PHEMT)製程的Q頻段低雜訊放大器。這個低雜訊放大器在32至41-GHz頻段表現出2.55分貝平均雜訊指數、擁有25.8分貝小訊號增益,此時功秏為36 mW,結果說明它有潛力應用於第五代手機通訊之低雜訊放大器。 接下來,介紹了兩顆使用了0.15微米砷化鎵假型高速電子遷移率電晶體製程的寬頻平坦低雜訊放大器。使用了R-L-C回饋技術,這邊的四級共源低雜訊放大器擁有寬頻效果。為了改善小訊號平坦度,回饋電感值亦被討論到。這邊的低雜訊放大器達到33.5分貝最大增益,以及1分貝增益變異量頻寬佔了超過九成3分貝增益變異量頻寬,同時在60毫瓦功秏下擁有小於1.6分貝的平均雜訊指數。 最後,兩顆大功率功率放大器制作於穩懋250奈米氮化鎵/碳化矽高速電子遷移率電晶體製程。隨著功秏上升,熱問題限制了最大輸出功率、效率以及功率放大器的壽命。考慮到這些情況,本論文中比較了不同的散熱方式,並使用了最好的方式來量測這兩顆功率放大器。

並列摘要


In this thesis, a Q-band MMIC LNA for 5G mobile communication applications in 0.15-μm GaAs pHEMT is presented. This LNA exhibits small-signal gain of 25.8 dB with 2.6-dB average noise figure from 32 to 41 GHz with 36-mW power consumption. It shows the potential of pHEMT devices in 5G mobile communication applications. Secondly, two wideband LNAs with low gain variation are fabricated in WIN 0.15-μm GaAs pHEMT process. With R-L-C feedback technique, the proposed LNAs with 4-stage common-source amplifiers provide wideband performance. In order to improve the variation of the small-signal gain, the selection of the feedback inductance will be discussed. The LNAs achieve 33.5-dB peak gain, 1-dB gain variation within over 90% of the 3-dB bandwidth and less than 1.6-dB average noise figure with 60-mW power consumption. Finally, two high power PAs are fabricated in WIN’s 250-nm GaN/SiC HEMT process. As the power consumption is increased, the thermal problem becomes an essential issue that determines the maximum output power, efficiency and durability of the power amplifier. Taking this into account, different thermal dissipation methods are compared, and the best method has been used as a measured setup for the proposed power amplifiers.

參考文獻


[1] T. S. Rappaport et al., “Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213-6230, 2017.
[2] Y. T. Chou, C. C. Chiong and H. Wang, “A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process,” 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
[3] B. Y. Chen, C. C. Chiong and H. Wang, “A high gain K-band LNA in GaAs 0.1-μm pHEMT for radio astronomy application,” in Asia-Pacific Microwave Conference, Sendai, Japan, 2014, pp. 226-228.
[4] P. H. Ho, C. C. Chiong and H. Wang, "An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process," in Asia-Pacific Microwave Conference Proceedings (APMC), Nov 2013, pp. 713-715.
[5] D. Schwantuschke et al., "Q- and E-band amplifier MMICs for satellite communication," in IEEE MTT-S International Microwave Symposium (IMS), 2014, pp. 1-4.

延伸閱讀