透過您的圖書館登入
IP:18.222.37.169
  • 學位論文

調控有機分子在金屬表面的電子結構及傳輸行為

Controlling Electronic Structures and Transport Properties of Organic Molecules on Metallic Surfaces

指導教授 : 林敏聰
共同指導教授 : 關肇正(Chao-Cheng Kaun)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


藉由分子的高可撓性和複雜製成的高完成性,設計以分子為基底的裝置引起廣泛的關注。其中,有機材料和金屬結合的分子因具有特殊的磁性行為,因此此類分子有相當大的潛力來達成奈米尺度的自旋電子元件。但因為在設計過程中,分子經常須被放置在基底上,如果要完成功能性的自旋電子元件,分子和外界的交互作用須要被清楚的了解。因此在一開始,我們藉由掃描穿隧電子顯微鏡結合第一原理計算來研究錳酞花青分子在銅(111)和鈷在銅(111)上的吸附行為,在研穿過程中我們發現,凡得瓦力的加入,在銅(111)的計算上可以得到可跟實驗比較的結果。藉由改變分子和基底及分子跟分子之間的作用力,我們發現這些作用力會帶給分子相當大的影響。 此外,利用自旋極化掃描穿隧電子顯微鏡,錳酞花青分子在鈷/銅(111)的磁性行為可被探討。為更清楚探討此處的磁性行為,我們計算了以自旋極化掃描穿隧電子顯微鏡量測樣品的結構為模型的自旋傳輸特性,藉此希望能更合理的來解釋實驗結果。更進一歩,藉由改變磁性針和樣品的距離,上述的傳輸行為可以被調控,我們認為是存在於錳酞花青分子和鈷/銅(111)間的兩者主要作用力造成此影響,這兩個作用分為是s和p電子軌域的混成和齊納磁耦合作用力。

並列摘要


Design of the molecule-based system has attracted interest due to its broad flexibility for realizing highly complex processes. Especially, the organic-metallics molecules provide unique magnetic characteristics which give a possibility to realize nanoscale spintronic devices. However, molecules play a part in the environment of a device since they are frequently placed on substrates. Thus, in order to design a real functionality in spintronic devices, the fundamental study of the basic interactions of the molecules with the environment is an essential work. At first, we study the adsorption behaviors of ManganesePhthalocyanine (MnPc) molecules on Cu(111) and Co/Cu(111) surfaces by a combined investigation of STM measurements and ab initio calculations. In this part, the Van der Waals forces are involved to give a reliable atomic configuration compared to STM images of MnPc/Cu(111). From the results, the various molecule-substrate and molecule-molecule interactions reveal a significant influence on electronic and magnetic properties of MnPc molecules. In addition, SP-STS measurements are performed to investigate the magnetic coupling at the interface between the MnPc molecule and Co/Cu(111) surface. A spin transport model based on the NEGF-DFT framework, using STM-moleculesubstrate as a nanojunction, has provided a better understanding on SP-STS results. More importantly, this spin transport model indicates a controllable spin transport behavior of the nanojunction via various tip-sample separations, which is due to the subtle balance of the sp hybridization and the Zener exchange coupling between the tip and MnPc.

參考文獻


[1] Heiko Wende, Nature Materials news & views, 8, 165 (2009)
and E. Beaurepaire, Phys. Rev. Lett. 105, 077201 (2010)
and J. P. Bucher, Phys. Rev. Lett. 101, 116602 (2008)
[5] Noriyuki Tsukahara, Ken-ichi Noto, Michiaki Ohara, Susumu Shiraki, Noriaki
Takagi, Yasutaka Takata, Jun Miyawaki, Munetaka Taguchi, Ashish Chainani,

延伸閱讀