透過您的圖書館登入
IP:3.141.31.209
  • 學位論文

半導體奈米結構於白光LED高效率螢光材料之應用

Efficiently Luminescent Materials Based on Semiconductor Nanostructures for White-Light-Emitting Diodes

指導教授 : 林清富

摘要


本研究提出具有新的光轉換程序的螢光材料,是利用半導體奈米結構來取代稀土元素d-f電子躍遷的激發與放射機制,此系統可以解決白光LED螢光粉對於稀土元素的依賴,以避免持續的過度開採稀土而對環境造成嚴重的迫害。 本研究內容可以分為三個部分,第一部分為開發一種可以將紫外光轉換成暖色系白光的奈米複合材料,其結構是在ZnS:Mn (ZMS)與ZnO半導體奈米粒子表面聚合上高分子poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (PF),形成類似核-殼(core-shell)的奈米結構。此奈米結構中設計有三種不同的電子電洞複合機制,因此可釋放三種不同能量之光子,在紫外光的激發下,經由電子躍遷而產生藍光、綠光與橘紅光,進而合成白光。此藍光、綠光與橘紅光的相對強度具有調變性,因此白光可以涵蓋色溫2100K左右的燭光以及色溫6000K以上的冷白光。 第二部分則針對上述的半導體奈米複合材料進行量子效率的最佳化,分別從材料反應濃度、材料厚度、奈米材料的尺寸與激發波長來探討其對量子效率的影響。在參數最佳化之後,暖白光與冷白光材料系統之量子效率皆可以到達到80 %以上。 在本研究的第三部分為擴展本材料架構之應用性,利用半導體奈米材料設計可利用藍光進行光致發光的系統,我們提出了兩種不同的材料結構,分別為(i) ZnS:Mn/ZnO/PF三層結構之粒子 (ii)參雜錳之硒化鋅奈米粒子(ZnSe:Mn)。其中在(i)系統中,利用ZnO與ZnS:Mn接面間的電子轉移(interfacial transition),可將ZnS:Mn價帶的電子以藍光激發到ZnO的傳導帶,這些激發電子可經由介面能態與電洞複合而達成光轉換的程序,此系統可以在400 nm ~ 430 nm的藍光激發下產生黃綠光。而在(ii)系統,我們合成能隙位於藍光波段的直接能隙半導體材料ZnSe:Mn,利用Mn離子之最外層d軌域受到ZnSe晶格場的量子微擾效應,分裂為兩個不同能態,利用電子於此能態之躍遷進行藍光轉換為橘光的光物理程序,而將400nm ~ 460 nm的藍光轉換成峰值在580 nm ~ 600 nm的橘光。 本研究所提出的光物理程序,可成功將紫外光或藍光經由半導體奈米結構轉換為較長波長之可見光,此方法不但具有相當高的發光效率且其材料可利用低溫溶液製程合成,更重要的是其發光機制不必再依賴價格昂貴且不環保的稀土元素,本材料具有很大的潛力作為新世代LED固態照明之螢光材料。

並列摘要


Currently available methods for white light emission, either based on rare-earth doped phosphors or cadmium-contained quantum dots, are associated with high environmental cost of rare-earth mining or cadmium pollution. Here we present a cutting-edge nanotechnology based on semiconductor nanostructured composites that give warm-white-light emission and efficient luminescence conversion. The elaborately designed nanocomposites presented in fisrt part encompass three different electron-hole-recombination mechanisms, which can contribute to photon emissions at blue, green and orange light. Benefiting from the controllable photon-emission mechanisms, wide tunablity of color temperature from near 2100 K to above 6000 K, including both candle light and pure white light, has been attainable, providing a forward-looking property for luminescent materials of solid-state lighting. In second part, we focus on improving the quantum efficiency of the nanocomposites. By optimizing the excitation wavelength, size of nanoparticles, thickness of the nanocomposites, and component ratios, the nanoscale composites composed of wide band gap materials can effectively reduce emission loss caused by scattering and self-absorption, and thus a high quantum efficiency above 80 % can be achieved. In third part, we present two novel luminescenct systems for blue-pumped white-light-emitting-diodes (white-LEDs). These two systems, ZnS:Mn/ZnO/PF multilayer particles and ZnSe:Mn nanoparticles, can achieve wavelength down-conversion from blue light to yellow and orange light, respectively. In this work, the innovative approaches for luminescence conversion can serve as an energy-saving and environmentally benign technology for white-LED lighting applications.

參考文獻


第一章
[1] Kurzweil, R., Schneider, M. L. & Schneider, M. L. The age of intelligent machines. Vol. 579 (MIT press Cambridge, 1990).
[2] 林清富, 光學與光電導論. 五南, (2012)
[3] Kazimierczuk, M. K. & Szaraniec, W. Electronic ballast for fluorescent lamps. Power Electronics, IEEE Transactions on 8, 386-395 (1993).
[4] Ronda, C. Phosphors for lamps and displays: an applicational view. J Alloy Compd 225, 534-538 (1995).

延伸閱讀