透過您的圖書館登入
IP:52.15.174.19
  • 學位論文

以光固化3D列印技術製造阿基米德螺旋形微混合器之探討

Stereolithographic 3D Printing of Archimedes Screw Micromixer

指導教授 : 單秋成

摘要


微混合器可分為主動式和被動式,被動式混合器主要以改變流道幾何形狀來增加流體混合效果,在改變幾何形狀同時仍須保持流道內的暢通性,因此本論文在流道中引入阿基米德螺旋形狀混合器,利用其薄壁多向性,預期可達到同時提升混合效率又能保持流道內暢通的效果。微機電製程技術在微小結構物上製作已經非常成熟,由於光罩上的限制,較不利於製作三維多方向性的曲面結構,3D列印以疊層製造的方式做出複雜的三維曲面,然而以目前3D列印技術製作微米級結構仍有一定程度的困難,本論文探討如何以數位光學處理(Digital Light Processing, DLP)之光固化技術製作出微小且具有三維曲面之結構,首先將商用投影機的鏡頭搭配套筒改裝,接著探討包括樹脂配方選用、曝光時間、切層厚度等對於製程上的影響,目標是以DLP技術做出既能逼近雙光子聚合技術(Two-photon Polymerization, TPP)之微小尺寸,又可快速製造更大的尺寸。最後製造出微米級的阿基米德螺旋,應用在微混合器中,進行混合測試。研究結果顯示,改良式DLP可成功列印出最小流道寬度750 阿基米德螺旋結構。

並列摘要


Micromixers can be classified as passive or active micromixers. Passive micromixers improve mixing efficiency mainly by changing the geometry. When changing the geometry, it’s also necessary to keep the flow of microchannel without obstruction at the same time. So Archimede’s Screw is printed in the microchannel in this thesis. Taking advantage of thin-wall and multi-directional property of Archimede’s Screw, increasing mixing efficiency and keeping the channel permeable could simultaneously be expected. Although microstructure fabrication could be achieved successfully by using MEMS technology, it’s still difficult to produce multi-directional curved surface structure by using MEMS technology due to the limitation of mask. 3D Printing technology can manufacture complex surface with layer-by-layer technique but still has some difficulties in producing micron-level structure. This thesis investigates how to use DLP technology to fabricate micro and curved surface structure. At first refitting the sleeve of commercial projector has been executed. Then the effect of the exposure time, the layer thickness and the composition of resin on the process have also been studied. The objective is to produce the microstructure almost as same as adopting TPP(Two-photon Polymerization) by using DLP technology. Finally, micron-level Archimede’s Screw is successfully printed in the microchannel and mixing test has been done. The results reveal that this improved DLP technology has the ability to print the channel with a minimum width of 750 .

參考文獻


[7]蔡福森DLP 投影機技術與產品動態. 1998.
[11]Nguyen, N.-T. and Z. Wu, Micromixers—a review. Journal of Micromechanics and Microengineering, 2004. 15(2): p. R1.
[13]Liu, R.H., Bubble-induced acoustic micromixing. Lab on a Chip, 2002. 2(3): p. 151-157.
[14]Mao, H., T. Yang, and P.S. Cremer, A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. Journal of the American Chemical Society, 2002. 124(16): p. 4432-4435.
[15]Kamholz, A.E., Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical chemistry, 1999. 71(23): p. 5340-5347.

被引用紀錄


林軒邑(2017)。以數位光學處理進行3D列印製作微米級結構〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201702513

延伸閱讀