透過您的圖書館登入
IP:18.217.190.58
  • 學位論文

質子交換膜燃料電池在不同流道之性能比較與分析

Performance Comparison and Analysis of Proton Exchange Membrane Fuel Cells in Different Fluid Channels

指導教授 : 馬小康

摘要


本文藉由CFD-RC套裝軟體來模擬質子交換膜燃料電池內之燃料濃度場分佈、溫度分佈、流道內之流場、壓力場分佈對質子交換燃料電池性能之影響。且同時針對三種不同形狀之流道,討論個別之極化曲線,以改善濃度過電位或是其他過電位所造之的電壓損失,進而找出各個流道設計的優缺點及最佳性能以期提升質子交換膜燃料電池之效能。 在理論分析中使用Navier-Stokes Equation作為流場的統御方程式並配合能量、成份守恆方程式及電化學相關之方程式求解電池內部的各項性質如壓力、速度、電流密度及溫度等等。而在數值方法中以有限體積法為離散方法,並利用SIMPLEC法求解流場之分佈。本文的結果顯示就流動機制而言,一般還是指叉型流道的流動機制好過於蜿蜒式流道再好過於平行式的流道;若是由電化學反應方面,在本文中所模擬的三種流道中,以旋轉-指叉式流道的電化學反應性能最佳,蜿蜒式流道次之,平行式流道則最差;壓損方面則是蜿蜒式流道最大。

並列摘要


The study simulates the distribution of concentration, temperature, pressure and current density in a single proton exchange membrane fuel cell by commercial software CFD-RC. Here it also considers different operation conditions to discuss the influence on performance. Meanwhile, four completely different types of flow channels were used to analysis their polarization curves in order to improve the voltage loss caused by over-potential of concentration or others. With the above observations the advantages and disadvantages of each flow channels could be discussed and then the performance would be improved. The Navier-Stokes equations with the energy, species equations and the relative electrochemical equations were solved in this study. The SIMPLEC algorithm with finite volume based scheme was used in this numerical analysis. The results indicated the concentration of oxygen in the cathode are significant effects for the cell performance, the concentration over-potential increased while the failure to transport sufficient oxygen to the catalyst, oppositely the cell performance increased as the inlet pressure or concentration of the reactant are increased. The results also shown that the Spiral-Interdigitated channel type has the best output performance and the serpentine channel type has the greatest pressure drop.

並列關鍵字

PEM Fuel Cell Serpentine Interdigitated Performance

參考文獻


5. 黃詩涵,“ 質子交換膜燃料電池之流道模擬分析” 台灣大學機械工程研究所碩士論文, 2005.
6. 涂正輝,“ 質子交換膜燃料電池之三維流道設計與熱質傳分析” 國立成功大學機械工程研究所碩士論文, 2003.
7. BP, “ Statistical Review of World Energy 2005”, June 2005.
9. E. Hontanon, M. J. Escudero, C. Bautista, P. L. Garcia-Ybarra, L. Daza,“ Optimization of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques”, J. Power Sources, Vol. 86, pp. 363-368. 2000.
10. T. E., Springer, M. S. Wilson, and S. Gottesfeld, “ Modeling and Experimental Diagnostic in Polymer Electrolyte Membrane Fuel Cells”, J. Electrochemical, Vol. 140, pp. 3513, 1993.

被引用紀錄


Hsien, H. M. (2009). PIC18F452微控器應用於1KW燃料電池控制系統之研究 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu200900436
郭耀宗(2009)。壓電式質子交換膜燃料電池性能於陰極端之理論與實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.00164
黃育仁(2009)。陽極流道對於壓電式質子交換膜燃料電池性能之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.00158
林群傑(2008)。壓電可變式流道質子交換膜燃料電池之數值模擬分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.00337
城立偉(2007)。壓電可變式流道質子交換膜燃料電池之效率分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.00051

延伸閱讀