透過您的圖書館登入
IP:3.12.36.30
  • 學位論文

奈米粒子偵測器之研製及檢測技術與二氧化矽原子層沉積技術之研究

Fabrication and Detection Technology of Nanoparticle Counters and Atomic Layer Deposition of Silicon Dioxide

指導教授 : 陳敏璋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要分為兩大部分,第一部分探討固態奈米孔洞(solid-state nanopore)結構的製備、抗腐蝕處理、提升訊雜比、檢測流程、數據分析以及模擬分析。我們透過庫爾特原理(Coulter principle)研究溶液中的奈米金粒子(GNP)(直徑為30~50nm),可以歸納出電流脈衝訊號是由阻塞效應(blockade effect)以及抗衡離子(counter ion)貢獻的,且兩效應都與奈米粒子的尺寸息息相關,而透過TEM及模擬分析,得出電流脈衝的非對稱性是錐形(conical shape)奈米孔洞所導致。利用此研究的檢測分析方式,可以幫助製程端有效檢測溶液中的奈米粒子,進而達到提升良率的目的。 第二部分則是以雙(二乙基氨基)矽烷(BDEAS)作為前驅物,建立二氧化矽原子層沉積技術(ALD-SiO2)製程。XPS分析顯示了SiO2的非化學劑量特性,以及退火後OH-Si鍵結的減少,進而影響了金屬/SiO2/Si(MOS)電容的電性表現,使元件表現有顯著的改善。藉由此研究,能夠為後續相關製程定下基礎。

並列摘要


This thesis is divided into two parts. In the first part, the fabrication of solid-state nanopores, anti-corrosion treatment, improvement of signal-to-noise ratio, detection process, data analysis and simulation analysis are discussed. We use the Coulter principle to detect the gold nanoparticles (GNP) (30~50nm in diameter) in the solution, and deduce that the signal is contributed by the blockade and counter ion effect, which are closely related to the size of the nanoparticle. Through TEM and simulation analysis, it is concluded that the asymmetry of the current pulse signal is caused by the conical shape of the nanopore. The outcome indicates that the nanoparticles in the solution can be effectively detected, and the yield can be improved. The second part of this thesis uses bis(diethylamino)silane(BDEAS) as a precursor to establish the plasma atomic layer deposition (ALD) of SiO2. The X-ray photoelectron spectroscopy reveals that the non-stoichiometric feature of as-deposited SiO2 and the decrease of OH-Si bonds after the post-annealing, which leads to significant improvement of the electrical performance of the metal/SiO2/Si capacitors. Based on this research, we establish a foundation for the follow-up research.

參考文獻


1. Moore, G.E., Cramming more components onto integrated circuits. 1965, McGraw-Hill New York, NY, USA:.
2. Knotter, D.M. and F. Wali, Particles in semiconductor processing, in Developments in Surface Contamination and Cleaning. 2010, Elsevier. p. 81-120.
3. Zeng, H., et al., Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. 2002. 420(6914): p. 395-398.
4. Mucic, R.C., et al., DNA-directed synthesis of binary nanoparticle network materials. 1998. 120(48): p. 12674-12675.
5. Filipe, V., A. Hawe, and W. Jiskoot, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. 2010. 27(5): p. 796-810.

延伸閱讀