透過您的圖書館登入
IP:3.135.186.154
  • 學位論文

應用於光通訊之時脈產生器與突發式時脈資料回復電路

Clock Generator and Burst-Mode CDR for Optical Communications

指導教授 : 劉深淵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著科技的發展與進步,需要越來越大的資料傳輸量,高速長距離通訊系統,幾乎都採用光纖通訊技術來達到廣泛的應用,其中,發射器中的時脈產生器與接收器中的時脈資料回復電路,皆在光纖通訊系統扮演關鍵性角色。 在此篇論文,首先,介紹一應用於光纖通訊的38GHz 0.13um CMOS時脈產生器,它採用八相位電感電容壓控振盪器(8-phase LC VCO),可以產生八個相位,高達38GHz輸出頻率的時脈訊號,論文中將會推導出,使用電容電感串接高通式架構,可以維持較高的頻率,並採用分布負載式除頻器(split-load frequency divider),可以有效的增加除頻器的操作頻率,最後採用能降低相位誤差的相位偵測器(phase detector),可以改善輸出的邊頻(frequency spur)。 第二,說明一應用於被動光纖網路(PON)通訊的34Gb/s 90nm CMOS 突發式時脈資料回復電路(burst mode CDR)。為了符合被動光纖網路多工控制的應用,它需要非常短的鎖定時間,為了減少依賴輸入資料產生的抖動(data dependent jitter),並且產生高速的時脈,採用了電感電容閘式壓控振盪器(LC Gated VCO),為了要接收寬頻的資料,採用一個寬頻輸入匹配電路以及一個寬頻資料緩衝器,最後採用相位選擇器,來預防因全速率(full-rate)操作下,可能產生的錯誤鎖定。 最後,除了完成以上光纖通訊關鍵電路,我們也提出一些可應用於未來的高速除頻器,高速除頻器一般採用注入鎖定式除頻器,因為可以產生最高的操作頻率以及較低的能量消耗。三種注入鎖定式除頻器,分別可以操作在72-78 GHz, 82.7-85.8GHz以及93.5~109.4GHz的範圍,論文中將會推導出,不同的架構,將會影響最高可操作的頻率以及可除頻範圍。

並列摘要


With the development and advancement of technology, the more and more data transmission quantity is needed. High-speed and long-distance communication systems mostly adopt the optical networks in various applications. The clock generator for transmitter and the clock data recovery (CDR) for receiver play the critical roles. First, a 38GHz clock generator in 0.13um CMOS is presented for optical communications. An 8-phase LC voltage-controlled oscillator is presented to generate the 8-phase 38GHz outputs. The highpass characteristic CL ladder topology sustains the high-frequency signals will be derived in this dissertation. The split-load divider is presented to extend the operation frequency. The phase detector (PD) improves the static phase error and improves the frequency spur. Second, a 34Gb/s burse-mode CDR in 90nm CMOS is presented for passive optical network (PON) communications. The PON is attracting in the point-to-multipoint communication systems. It needs very short settling time. To reduce the data jitter and generate the high-frequency output clock, the LC gated voltage-controlled oscillator is presented. To receive and transmit the broadband data, a wideband input matching circuit and a wideband data buffer are presented, respectively. The phase selector is proposed to overcome the false phase lock due to the full-rate operation. Finally, in addition to realize the above key components of optical communications, some high speed frequency divider is presented for future applications. The injection-locked frequency divider (ILFD) is attractive because the highest operation frequency and low power consumption. Three ILFDs have the locking range of 72-78 GHz, 82.7-85.8GHz and 93.5~109.4GHz, respectively. It will derive the center frequency and the locking range for different ILFDs.

並列關鍵字

PLL:Multi-phase:CDR:divider

參考文獻


[3] B. Stilling, “Bit rate and protocol independent clock and data recovery,” Electronics Letters, vol. 36, pp. 824-825, April. 2000.
[4] C. R. Hogge, “A Self-Correcting Clock Recovery Circuit,” IEEE J. Lightwave Tech, vol. 3, pp. 1312-1314, Dec. 1985.
[5] J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975.
[6] X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased-array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, pp. 2311-2320, Dec. 2004.
[8] C. Lee, L. C. Chou, S. I. Liu, C. L. Ko, Y. Z. Juang and C. F. Chiu, “A 1.2V 37-38.5GHz 8-phase clock generator in 0.13um CMOS technology,” in Symposium on VLSI Circuits, Dig. Tech. Papers, pp. 27-28, June 2006.

延伸閱讀