透過您的圖書館登入
IP:3.145.17.20
  • 學位論文

以穿透式電子顯微術探討氮化銦鎵/氮化鎵奈米結構

Investigation of InGaN/GaN Nanostructures with Transmission Electron Microscopy

指導教授 : 楊志忠

摘要


在本論文中,首先我們使用高解析穿透式電子顯微鏡(HRTEM)與應變分析軟體(SSA)來討論兩片氮化銦鎵/氮化鎵多層量子井試片的材料特性,第一片為傳統(控制)試片,具有傳統的5層高濃度量子井對,第二片實驗試片為在成長5層高濃度量子井對之前先成長上一條低銦濃度的量子井對,其後這兩片試片所生長之5對量子井對均是在相同條件下所生長。由應變分析軟體所做出的量子井中平均銦的濃度分析來看,我們發現與傳統試片比較來說,在實驗試片中愈靠近低銦濃度量子井的氮化銦鎵量子井濃度,其含有銦的濃度會越高,這樣增加銦濃度的原因是由於在低銦濃度的量子井對所產生的預先應變效果所導致的,這樣的預先應變效益是隨著往上長愈多的量子井對,而逐漸減少。這個效應代表著在氮化銦鎵/氮化鎵多層量子井結構中能有效的增加銦的濃度來達到改善黃紅光發光二極體(LED)的目的。 接下來,我們使用穿透式電子顯微術與其他特徵技術來研究使用分子束磊晶(MBE)儀器所生長的氮化鎵奈米柱與其再結合生長的結構特性,我們比較兩種不同的奈米柱寬度與空間生長密度的再結合生長試片。我們發現當奈米柱的寬度高於500奈米,以及擁有低空間生長密度時,是導致非良好再結合生長情況的條件,其非良好的再結合生長氮化鎵區域為5-8微米。換句話說,若奈米柱具有小的半徑寬度~100奈米,以及高的空間生長密度,代表其後生長再結構層時會擁有良好的再結合生長層,其再結合生長氮化鎵區域為1-5微米。我們相信利用更小的奈米柱,更密集的生長密度,藉由再結合層生長方式釋放應力的效果,可以更有效的生長出更為統一的晶體生長方向,與更成功的氮化鎵再結合生長層。而在光學特徵分析中,我們獲得小的奈米柱的再結合生長層其缺陷密度是低於大的奈米柱的再結合生長層中缺陷密度的結果。 在本論文的第三部分,我們進一步使用平面方向穿透式電子顯微術來觀察在由分子束磊晶(MBE)儀器所成長的奈米柱上使用金屬有機氣相沉積儀器(MOCVD)所生長的氮化鎵再結合層的奈米結構討論。在橫截面掃瞄式電子顯微鏡(SEM)的圖片中,我們可以觀察到二段區域的再結合層的生長過程,首先一群小的奈米柱結合成較大的奈米柱,其中一個可能的結合過程是藉由在二個奈米柱之間生長出一個橋樑,來幫助二個奈米柱形成一個大的奈米柱,而較大的奈米柱在再結合生長層的第二個結合過程中會發展成喇叭狀的結構,然後結合成緊密的氮化鎵再生長層。而由於不同的奈米柱具有不同的晶體方向,藉由疊差(stacking fault)的形成可以用來改善兩個不同晶體方向的晶粒(domain)的結合層,使之結合生長。這樣一個使用在結合晶粒(domain)產生疊差特性的方式,是眾多希望能藉由奈米柱生長方式之一種可以主要用來減少在氮化鎵薄膜中線形式差排(Threading dislocation)密度的改善方法。 最後,在本論文的最後部分,我們要來討論阻隔線形式差排的方法,我們藉由成長上一層薄的二氧化矽薄膜,然後將此薄膜挖出均勻的圓洞,比較不同尺寸的二氧化矽圓洞,來討論圓洞尺寸對後續氮化鎵再結合生長層時,線形差排對再結合生長層的影響。由深度相依的 x-光繞射分析方法與橫截面穿透式電子顯微鏡的觀察結果,我們發現再結合層的線形差排密度與二氧化矽的圓洞尺寸是有相關性的。同樣的,在再結合生長層所產生的線形差排的種類,也與奈米柱的空間尺寸有關,雖然說在再結合生長層的底部的線形差排密度與奈米柱尺寸的相關性不強,但是在再結合生長層的表面,線形差排的密度卻與奈米柱的尺寸有強烈的相關性,延著不同的奈米柱尺寸和柱與柱之間的空間來看,具有最小的奈米柱尺寸與柱間空間,會有最少的線形差排密度,最大的側向晶體尺寸,與最高的光激螢光效率。最後我們也看出這些再結合生長層表面的光學與晶體特性都優於其下的氮化鎵模板,代表此方法能獲得更優良的氮化鎵薄膜模板。

並列摘要


We use the techniques of high-resolution transmission electron microscopy (TEM) and strain state analysis (SSA) to show the material nanostructures of two InGaN/GaN quantum-well (QW) samples. In one of the samples, a low-indium InGaN/GaN QW is grown before five high-indium ones, which are grown under the same conditions as those for growing the five QWs in another sample (the control sample). From the calibrations of the average indium contents of those QWs based on the SSA images, it is found that the QWs close to the low-indium one have higher indium contents than those in the control sample. Such an increase of indium incorporation is attributed to the pre-strain effect of the low-indium QW on the barrier layer right above it. The pre-strain effect diminishes along the growth of more QWs. This effect represents an effective approach for increasing indium contents for implementing yellow-red light-emitting diodes based on InGaN/GaN QW structures. Then, we investigate the structural properties of molecular-beam-epitaxy coalescence overgrowth of GaN columns at the nanoscale with transmission electron microscopy (TEM) and other characterization techniques. Two samples grown over nanocolumns of different widths and spatial densities (columns/area) are compared. It is found that columns with a larger cross section (~500 nm) and correspondingly lower spatial density normally lead to un-coalesced overgrown domains ranging 5-8

並列關鍵字

GaN InGaN TEM Defects Dislocation Stacking Fault

參考文獻


[1.1] S. Nakamura and G. Fasol, The Blue Laser Diode (springer, Berlin, 1997).
[1.4] A. Koukitsu, N. Takahashi, T. Taki, and H. Seki, Jpn. J . Appl. Phys. 35, L673 (1996).
[1.5] M. Shimizu, K. Hiramstsu, and N. Sawaki, J. Cryst. Growth. 145, 209 (1994).
[1.7] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
[1.10] K. Kouyama, M. Inoue, Y. Inose, N. Suzuki, H. Sekiguchi, H. Kunugita,K. Ema, A. Kikuchi, and K. Kishino, J. Lumin. 128, 969 (2008).

延伸閱讀