透過您的圖書館登入
IP:3.15.27.232
  • 學位論文

超疏水與高疏油之透明低透濕性二氧化矽/壓克力奈米複合材料

Superhydrophobic and Oleophobic Transparent Low Moisture Permeation Polyarylate/Silica Nanocomposite

指導教授 : 林唯芳

摘要


本研究目的在於發展一種具有超疏水性、疏油性的透明奈米複材封裝薄膜,我們採用三個製程步驟來製做此薄膜。第一製程的目標在於合成出奈米複合材料樹脂及製備奈米複材薄膜。我們將20-30奈米及70-100奈米混和二氧化矽粒子以矽烷耦合劑3-(Trimethoxysilyl) propyl methacrylate (MPS)進行表面改質,再將改質過的奈米粒子連同光起始劑 1-Hydroxy-cyclohexyl-phenyl-ketone (Irg 184)均勻混入壓克力tricyclodecane dimethanol diacrylate (TCDDA)單體。我們利用塗佈拉膜法(casting)及在935.3瓦特的光聚合,將樹脂製作成60-200微米厚的複合材料薄膜。 第二製程我們藉由氧電漿將複材表面粗糙化及裸露表面的二氧化矽粒子。複材薄膜在6 × 10-1 托耳氧壓及18瓦特功率的環境中進行氧電漿處理15分鐘。表面粗糙度可藉由改變複材中不同粒徑的二氧化矽比例及氧電漿處理來操控。 最後,我們將電漿處理過的薄膜浸塗(dip-coating)於含有2 vol%的氟碳偶合劑 1H,1H,2H,2H-perfluorodecyl trimethoxysilane (PFDTMES)的酒精溶液中,並在攝氏80度的烘箱中乾燥浸泡過的奈米複材薄膜。 整個系列裡,以含40 wt% 70-100奈米二氧化矽、10 wt% 20-30奈米二氧化矽及50 wt% 壓克力單體的奈米複合材料表現最好。它分別以161度水接觸角及131度油接觸角表現出超疏水性與高疏油性。此外,它亦具有不錯的阻水性質(1.44 g•mm/m2•day)與透光性,60微米厚的薄膜在可見光範圍中的光穿透度可達80%。此新穎性的奈米複材薄膜可運用時光電子原件的封裝以及自潔性表面。

關鍵字

超疏水 疏油 奈米複合材料 封裝 氧電漿 透明

並列摘要


This research focused on the development of superhydrophobic oleophobic low moisture permeation transparent nanocomposite films. We utilized a three-step process to fabricate the films. The first step involved the synthesis of hybrid resins and fabrication of nanocomposite films. The resins contained a mixture of 20-30 nm and 70-100 nm SiO2 nanoparticles, tricyclodecane dimethanol diacrylate (TCDDA) and a photo-inititor (1-Hydroxy-cyclohexyl-phenyl-ketone, Irg184). The SiO2 nanoparticles were surface-modified by 3-(Trimethoxysilyl) propyl methacrylate (MPS) and then dispersed into TCDDA homogeneously with a 50 wt% of nanoparticles. Dense hybrid films of 60-200 μm were prepared by casting the resins on glass substrates or PET films and then photo-curing by 935.3 watts/m2 at a distance of 20 cm for one minute. In the second step, we treated the nanocomposite films with an oxygen plasma treatment (6 × 10-1 torr, 18 watts) for fifteen minutes. Thus, the surfaces could be roughened and SiO2 nanoparticles on the surfaces could be exposed. Surface roughness was controlled by varying weight ratios of different-sized SiO2 in nanocomposites and the condition of oxygen plasma treatment. The final step was to introduce a 1H,1H,2H,2H-perfluorodecyl trimethoxysilane (PFDTMES) coating onto the surfaces by dip-coating the oxygen plasma-treated films in a solution of 2 vol% of PFDTMES in ethanol. The wet nanocomposite films were II then dried at 80℃ for one hour. The best-performance nanocomposite film is made from the resin containing 40wt% 70-100 nm SiO2, 10 wt% 20-30 nm SiO2 and 50 wt% TCDDA. It exhibits both superhydrophobicity and highly oleophobicity with a water contact angle of 161° and an n-1-octadecene contact angle of 131°, respectively. It also has low moisture permeation of 1.44 g•mm/m2•day and good transparency of 80% at 400-800 nm for a 60 μm film. This novel nanocomposite film has potential applications in the encapsulation of optoelectronics and self-cleaning surfaces.

參考文獻


1. Anand, M., Cohen, R. E., Baddour, R. F., Surface Modification of Low Density Polyethylene in a Fluorine Gas Plasma. Polymer, 1981, 22(3), p. 361-371
2. Barthlott, W.*, Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 1997, 202(1), p. 1-8
3. Behnisch, J., Hollander, A., Zimmermann, H., Factors Influencing the Hydrophobic Recovery of Oxygen-plasma-treated Polyethylene. Surface and Coatings Technology, 1993, 59(1-3), p. 356-358
4. Bravo, J., Zhai, L., Wu, Z., Cohen, R. E.*, Rubner, M. F.*, Transparent Superhydrophobic Films Based on Silica Nanoparticles. Langmuir, 2007, 23(13), p. 7293-7298
5. Brinker, C. J., Frye, G. C., Hurd, A. J., Ashley, C. S., Fundamentals of Sol-Gel Dip Coating. Thin Solid Films, 1991, 201(1), p. 97-108

延伸閱讀