透過您的圖書館登入
IP:3.12.71.237
  • 學位論文

以地磁驅動之低耗能無推進燃料超導線圈推進器之研究與開發

Research and development of a low energy consumption propellant-free superconducting solenoid thruster driven by geomagnetic field

指導教授 : 潘國隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究建構於基礎電磁學理論,利用多重物理量有限元素法軟體模擬Comsol-Multiphysics分析線圈於磁場中的受力,並且搭配實驗量測驗證。經由分析,利用磁矩梯度項可以有效增加線圈於磁場中的受力,用此概念設計之以地磁驅動之超導線圈推進器,具有免攜帶推進燃料與低耗能的優勢。 首先,藉由計算與實驗量測漸變式截面積之鋁芯線圈於非均勻磁場中的受力,可以確認線圈於磁場中受力時,磁矩梯度項的存在。為了增強線圈於磁場中的受力,選用鐵芯作為線圈中心,將漸變式截面積之鐵芯線圈放置於地磁場中,計算量測不同線圈截面積改變梯度以及電流大小對應的受力,發現線圈受力與截面積改變梯度以及電流大小成正比關係,與理論相符。藉由低溫環境的實驗與模擬,將可以模擬超導線圈推進器於太空的受力情形,由數值分析可知,超導線圈推進器的受力與在室溫預期的受力關係相符,因此所分析的受力關係可作為未來設計者一可靠的參考。此概念所設計之以地磁驅動的超導線圈推進器具有免攜帶燃料與低耗能的優勢,具有太空探索的發展潛力。

並列摘要


This study is built on fundamental electromagnetism. We utilized commercial software Comsol-Multiphysics to calculate the force exerted on a solenoid in a magnetic field, and compared the measurement results with the numerical results to verify the analyzing results which showed that the magnetic moment gradient term will greatly enhance the exerted force on a solenoid in a magnetic field. Designing by the concept above, a superconducting solenoid thruster driven by geomagnetic field has advantages of low energy consumption and propellant-free. At first, we calculated and measured the force exerted on several gradient cross-section area aluminum core solenoids in a non-uniform magnetic field, and confirmed that the magnetic moment gradient term do exist. To enhance the force exerted on the solenoid, we replaced the aluminum core with the iron core. Then we placed the gradient cross-section area iron core solenoid in geomagnetic field and measured the forces corresponding to different cross-section area change gradients and different electric current magnitudes. The results showed that the force exerted on the solenoid is proportional to cross-section area change gradient and electric current magnitude, as theory predicted. By measuring and calculating the force exerted on a superconducting solenoid in low temperature, we can simulate the condition when the superconducting solenoid thruster is in space. The numerical results showed that the force exerted on a superconducting solenoid in low temperature matched with the predicted force relation of cross-section area change gradient and electric current magnitude in room temperature. Therefore, the predicted force relation can be a reliable reference to future designers. Designing by the concept above, a superconducting solenoid thruster driven by geomagnetic field has advantages of low energy consumption and propellant-free and has the potential of space exploration.

參考文獻


1. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, 7th Edition, Wiley (2001).
2. J. F. Engelberger, Space propulsion system, US patent 3, 504, 868. US Cl. 244-1 (1970).
3. Y. Tsuda, O. Mori, R. Funase, H. Sawada, T. Yamamoto, T. Saiki, T. Endo, K. Yonekura, H. Hoshino, and J. Kawaguchi, Achievement of IKAROS — Japanese deep space solar sail demonstration mission, Acta Astronautica, Vol. 82, p. 183-188 (2013).
4. V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, Physics of closed drift thrusters, Plasma Sources Sciences and Technology, Vol. 8, No. 1 (1999).
5. E. Ahedo and P. Martı´nez-Cerezo, One-dimensional model of the plasma flow in a Hall thruster, Physics of Plasmas, Vol. 8, No. 6 (2001).

延伸閱讀