透過您的圖書館登入
IP:18.119.131.72
  • 學位論文

生物系統中電子與質子傳遞之理論研究:針對環境影響與量子效應作探討

Theoretical Studies on Electron and Proton Transfer in Biological Systems: Environmental Contributions and Quantum Effects

指導教授 : 鄭原忠

摘要


電子與質子傳遞在許多化學反應及生物系統中均扮演著重要的角色,例如光合作用、綠色螢光蛋白、粒線體膜蛋白引發的代謝反應乃至半導體工業所需的光蝕刻製程,其影響範圍之廣、作用之深,也因此,該如何透過實驗與理論,有效地在定性、定量上分析可能影響電子/質子傳遞機制的因素,無庸置疑地便成為長年來最重要的研究主題之一。本論文中,將運用時變性密度泛函理論(Time-dependent density functional theory)、量子朗之萬方程(quantum Langevin equation)及直接性耦合計算(Direct coupling)等方法,針對不同系統中的電子、質子傳遞反應進行理論計算研究,以期更深入了解此類反應的化學動力學機制。本論文主要分為三個篇章,分別針對不同的電子/質子傳遞問題作探討:(ㄧ)粒線體膜蛋白(細胞色素bc1)中,電子在血基質網絡之間的傳遞機制與速率分析;(二)類光合作用系統中,激發態的質子與電子耦合傳遞反應機制;(三)利用計算分子中特定位置的電位,發展高效率的激發態酸性預測方法。由本論文得出之結果,將有助於揭示生物系統中電子、質子傳遞的動力學過程,了解環境與其他系統自由度是如何透過與電子/質子的耦合來影響粒子傳遞,另一方面確認了以量子力學方法處理相似類型問題的必要性。更進一步,我們期望未來能以此研究為基礎,提高設計仿生功能分子的效率。

並列摘要


Electron and proton transfer are at the heart of many chemical and biological systems, such as photosynthesis, mitochondria, and light-sensitized dyes. Quantitative identification of different factors that affect the electron/proton-transfer dynamics, including quantum effects in biological systems and couplings with environment, remain to be critical issues. In this thesis, we utilize time-dependent density functional theory, quantum Langevin equation, and direct coupling calculations to examine the electron/proton-transfer dynamics in biological systems. Three topics are independently studied: (a) determining the electronic couplings and electron-transfer rates within the heme network in a mitochondria membrane protein, cytochrome bc1 complex (b) examining the mechanism behind excited-state proton-coupled electron transfer in a hydrogen-bonded molecular pair mimicking the key step of light reaction in photosynthesis, and (c) developing an excited-state-acidity descriptor based on strong correlation between photoacidity and local electrostatic potential at the proton-donating atom. From the results, couplings of the electron/proton-transferring motion with environment and other degrees of freedom are demonstrated to play important roles affecting the reaction dynamics. Quantum-mechanical treatments must be applied to achieve qualitatively-correct pictures illustrating the mechanism. Knowledge learned from our results can serve as basis for understanding the dynamical behavior of biological electron/proton transfer, which can be further applied to design artificial compounds mimicking the functionalities of natural species.

參考文獻


[1] J. W. Cooley. Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle. Biochim. Biophys. Acta - Bioenergetics, 1827:1340, 2013.
[2] C. J. Gagliardi, B. C. Westlake, C. A. Kent, J. J. Paul, J. M. Papanikolas, and T. J. Meyer. Integrating proton coupled electron transfer (PCET) and excited states. Coord. Chem. Rev., 254:2459, 2010.
[3] B. Kok, B. Forbush, and M. McGloin. Cooperation of charges in photosynthetic o2 evolution-i. a linear four step mechanism. Photochem. Photobiol., 11:457, 1970.
[5] D. Pines, S. Keinan, P. M. Kiefer, J. T. Hynes, and E. Pines. Effect of solvent dielectric constant and acidity on the OH vibration frequency in hydrogen-bonded complexes of fluorinated ethanols. J. Phys. Chem. B, 119:9278, 2015.
[6] G. Renger and T. Renger. Photosystem ii: The machinery of photosynthetic water splitting. Photosyn. Res., 98:53, 2008.

延伸閱讀