透過您的圖書館登入
IP:18.218.48.62
  • 學位論文

噴射式大氣電漿系統之設計架設與大面積氧化鋅鎵薄膜均勻度之改善

Development of Atmospheric Pressure Plasma Jet System and the Improvement of Large Area Ga-doped ZnO Uniformity

指導教授 : 莊嘉揚

摘要


鍍製透明導電薄膜材料有多種方法,噴射式大氣電漿 (Atmospheric Pressure Plasma Jet,簡稱APPJ)是其中一種。相較於主流的濺鍍法和化學氣相沈積,APPJ的特點是可在大氣環境下進行鍍膜,可以省去真空腔體的複雜度。更值得關注的是,噴射式大氣電漿利用射頻產生非平衡電漿,產生極高的電子溫度以及高活性電漿粒子密度,其氣體溫度仍可保持在室溫附近,由於電漿輔助化學反應,欲鍍製薄膜的基板並不需要加熱到高溫,特別適用用於塑膠類的軟性基板的鍍膜與表面處理。 本研究延續之前與工研院(Industrial Technology Research Institute,簡稱ITRI)的合作,於台大設計架設一套新的APPJ系統,此系統改良先前的系統,以期能達到大面積鎵摻雜氧化鋅薄膜的均勻鍍。先前實驗發現,當鍍製薄膜進行柵型掃描時,薄膜之阻值分布在靠近抽風口處偏高,呈現中央處高往外圍擴散而越低的現象。接著我們把腔體右側檔板取走,使右側為一個自由進出的開口端,進行相同參數柵形掃描,發現阻值分布卻呈現由左最低至右最高的現象,故我們認為鍍膜環境內的流場與薄膜性質有很大的關係。因此,本研究的設計特點之一即是產生一均勻流場,方法為將抽氣口由之前的機台的正前方移至機台的正下方,使得電漿頭噴出的氣體能夠四面八方的由玻璃基本的四周均勻流出。 另外,我們也改良了固定電漿噴嘴之懸臂樑,其設計像是「盒子」狀一般,不僅提高它的系統穩定性和共振頻率,也讓前驅物水溶液瓶能夠放置在裡面,以減少撓度產生。另外,我們改良了掃描軌跡系統的軟硬體,我們改以Visual Basic 6.0撰寫的程式語言來操作微步進馬達用來控制基板的平面掃描軌跡和電漿頭之垂直移動,不僅可進行各種不同參數的柵形掃描,也很容易實現迴旋式的掃描軌跡。 本研究是透過自行架設之機台,觀察由NTU APPJ機台鍍製出來之薄膜與工研院APPJ機台鍍製出來之薄膜的兩種薄膜品質比較,以了解NTU APPJ機台能夠改善多少的薄膜品質。

並列摘要


There are several methods for coating transparent conductive oxide (TCO) thin films; Atmospheric Pressure Plasma Jet (APPJ) is one of those. The advantages for APPJ are: the deposition is done at the atmospheric environment, so we can save the cost of vacuum, which is used in the dominate sputtering system. With the assistance of plasma for enhancing chemical reaction, the substrate can be maintained at a relative low temperature. In this thesis, we developed a new APPJ system based on the system developed by Industrial Technology Research Institute (ITRI). with a goal to achieve a better uniformity of Ga-doped ZnO (GZO) film deposited on large-area substrate. Based on the findings from our previous collaboration with ITRI, we found that the air flow on the substrate plays an important role, so we redesigned the system to obtain a uniform and steady air flow by moving the exhaust fan from one side of the housing to directly beneath the table. Another key improvement is the beam fixed with plasma jet, which is designed as “box-like”, which not only enhances the stability and resonance frequency of the system, but also secures the precursor solution bottle. We also redesign the hardware and software of the scanning system. We wrote a graphic user interface by Visual Basic 6.0 which allows the users to design versatile scanning trajectories with ease. Finally we use NTU APPJ system to deposit GZO thin films and established a process baseline, which can be used as the basis for future improvement of thin film properties. Our results show significant improvement in uniformity and film properties over those obtained previously by the original ITRI system.

參考文獻


[10] Y.-H. Wang, “Optical and Mechanical Properties of a Metallic Layer,” vol. 4, pp. 81–88, 2008.
[25] 蔡政翰, “氮氣常壓噴射式電漿模擬,” 國立台灣大學化學工程研究所碩士論文, 2013.
[26] 陳楷中周元昉*, “自動調頻的超音波霧化器激振電路研發,” 國立台灣大學機械工 程研究所碩士論文, 2014.
[41] 廖國淳, “聚乳酸成形蜂巢結構薄膜與電漿輔助改質表面研究,” 國立交通大學機械工程學系碩士論文, 2013.
[76] 周東陞, “噴射式大氣電漿鍍製鎵摻雜氧化鋅薄膜之性質研究及均勻度改善,” 國立台灣大學機械工程研究所碩士論文, 2014.

被引用紀錄


梁竣棠(2017)。噴射式大氣電漿系統之退火效應研究與鍍製軟性基材之初步測試〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703720

延伸閱讀