透過您的圖書館登入
IP:18.222.121.170
  • 學位論文

光學與電子生醫檢測技術之開發:多功光電生醫晶片儀與新式電化學量測方式

Development of optical and electrical biotech methodology: An optically multi-functional biochip system and innovative electro-chemistry methodology

指導教授 : 吳光鐘
共同指導教授 : 李世光

摘要


本研究成功的架構了一套完整的多功光電生醫晶片儀,其中整合了一套拋物面鏡式的變入射角機構、液晶相位調制器、參考光路與流道系統,提供了相位調制式橢圓偏光術與表面電漿共振技術兩種光學檢測模式,利用流道系統延伸兩套光學檢測模式於生物醫學免疫反應試劑(ELISA)與生物分子相互作用(BIA)的應用。除此之外,利用橢圓偏光術與表面電漿共振技術的整合,將生物醫學檢驗技術的解析度大幅提升,並將橢圓偏光術應用於生物醫學的動態檢測上做了實際的運用。在此將所研製之系統命名為OBMorph,利用此一創新檢測系統,提供生物醫學上於病原抗體檢測、生物動態結合分析與表面濃度量測的研究平台。 本研究所建構之系統中,利用拋物面反射鏡搭配伺服馬達控制三角稜鏡的位置,將入射角的精度控制於±0.001°,範圍可從20°變化至80°,並以布魯斯特角度(Brewster’s angle)與表面電漿共振角度作為系統起始角度的依據,將角度控制之準確度提高。此外,將系統中參考光路因元件不完美所造成之誤差利用軟體補償,增加系統檢測訊號之精確度與可靠度,且採用兩次入射試樣的偵測方式,提升系統之靈敏度。最後進行光機調校之步驟建立與系統轉換函數的分析及校正,使系統可精準的求出試樣檢測值。配合流道系統,使用步進馬達控制注射幫浦,將試樣流速可精準的控制在1μl/min至50μl/sec之間,配合蠕動幫浦輸入試樣、電動閥門控制試樣輸入,使系統擁有量測生物動態鍵結反應的能力。 電化學檢測方式為本研究的另一個主要重點,於此以血糖電化學檢測為開端,進而提出四種新式電化學檢測方式,其主要概念架構於正弦波的頻率調制與振幅調制,欲利用此一創新想法達到快速省電的目的。於初步驗證上,利用方波波形與正弦波波形的電壓供給,經過酵素型血糖檢測試片,驗證了此新式電化學檢測方式的於血糖量測上的可行性。此外,利用本研究的OBMorph的表面電漿共振技術來觀察因血糖濃度不同所造成的折射率變化,欲藉此一方式擴展OBMorph於一般醫學檢測上之應用。

並列摘要


In this dissertation, a multi-functional optical biochip system was built. This biosensor is developed by integrating ellipsometry and SPR detection techniques, which adopted a paraboloidal mirror and a spherical mirror to vary the incident angle, a LCD phase modulator to control incident light beam retardance, a reference optical path to calculate the phase modulated by LCD, and a flow-injection system to supply bio-samples to biochip. The other important function of this biosensor is to observe SPR phenomenon by using the ellipsometric configuration. By using this method, the SPR resolution could be significantly enhanced, and the characteristics of ellipsometry give detailed information for bio-tech analysis. Information such as film thickness, physical parameters, concentration, mass, density, kinetic constants, binding specificity, etc. can all be retrieved. This biosensor was named OBMorph, which is an acronym of Opto-BioMorphin. In summary, OBMorph could serve both as a research and development tool as well as a manufacturing tool in biomedical area. In order to achieve high precision goal, we adopt the mirrors and a 0.4μm accuracy servomotor to control incident angle between 20° to 80° within ±0.001° angular accuracy. By identifying Brewster’s angle and SPR angle, the interrogation angle could be retrieved accurately which leads to much higher sensitivity and stability. Moreover, calibration of reference optical path would be carried out, and the phase modulated by LCD would be detected more precisely to make our measurement more reliable. In order to increase signal to noise ratio, the object beam is designed to be reflected by sample twice times, and the extra ellipsometric parameters induced by the system would be detected and eliminated. Eventually, experimental results show that OBMorph, which is integrated with high efficiency flow injection system, could successfully measure not only the immobilized monolayer of IgG and bio-linker but also the thickness of biochip coating. A novel electro-chemistry method is another issue discussed in this dissertation. There are four methods were examined and all these methods derived their basic thoughts from adopting and modulating sinusoidal waves. From the experimental results, the first two methods are verified through enzymatic methods. With an attempt to expand the applications of OBMorph, this biosensor is also tested to pursue glucose concentration measurement as well.

參考文獻


Abeles (1976), “Surface Electromagnetic Waves Ellipsometry,” Surf. Sci., 56, 237-251.
Eagen, C. F., and Weber, W. H. (1979), “Modulated Surface-Plasmon Resonance for Absorption Studies,” Phys. Rev. B, 19(10), 5068-5086.
Elwing, H. (1998), “Protein Absorption and Ellipsometry in Biomaterial Re-search,” Biomaterials, 19, 397-406.
Genshaw, M. A., Huang, D., Musho, M. K., and Yip, K. F. (1997), “Apparatus for Reductionof Bias in Amperometric Sensors,” US Patent no. 5,620,579.
Homola, J., Yee, S. S., and Gauglitz, G. (1999), “Surface Plasmon Resonance Sensors : Review,” Sens. Actuators B, 54, 3-15.

被引用紀錄


陳君美(2008)。以偏極保持光纖研製波導干涉儀的先導性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.03123
徐仲凱(2007)。光纖式波導干涉儀之設計與研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.00366
詹家銘(2006)。圓偏光表面電漿子干涉儀之研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.01893
陳逸豪(2006)。手持式表面電漿共振儀的設計與研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.01852
郭志斌(2006)。多通道波導干涉儀之設計與研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.01513

延伸閱讀