PVDF壓電薄膜感測器與布拉格光纖光柵(FBG)是近年來常被學者研究的兩種感測器。本研究利用此兩種感測器進行兩大主題的探討,其一為懸臂梁軌道系統的主動抑振研究,而另一則為布拉格光纖光柵多點暫態量測系統的開發。 懸臂軌道的主動抑振的研究上,本文利用PVDF及FBG作為感測器量測系統的動態響應,並且使用陶瓷壓電平板作為致動器,針對此智慧懸臂梁結構確認動態特性後應用正位置回授(PPF)控制器,先針對單一模態設計控制參數,進行一系列的實驗確認最佳參數,再將此感測�致動系統應用於系統承受各種不同形式的動態撞擊之暫態運動的抑振控制,包含鋼珠落擊、側向撞擊、鋼珠滾動及大位移振動,並探討各種結果的特性。另外在粱的自由端位移量測上,利用拍攝振動影像並搭配數位影像相關法量測其動態響應,克服其它感測器的量測限制並有良好的結果。 過去光纖光柵應用能量調變解調方法在暫態量測上雖然有很好的量測結果,但無法利用同一條光纖量測多點的動態反應,本文利用分波多工器將訊號成功分開擷取,並將量測結果與有限元素法數值計算(ABAQUS)比較,驗證結構物的暫態波傳行為與實驗結果一致,最後則利用兩台分波多工器將不同光纖的訊號整合後再分開輸出,大幅改善過去多點量測的實驗缺失,也更具有實際應用的潛力。
Recently, polyvinylidene fluoride(PVDF) film and fiber Bragg grating(FBG) sensors are tentatively investigated by researcher. We use these two sensors to study two main topics. One is vibration control of cantilever rail beam subjected to dynamic loadings, and another is to develop the multiple point measurement technique using FBG. In the first part of this thesis, we use PVDF and FBG as sensors and combine with PZT as the actuator to establish the sensor/actuator smart system. After analyzing the dynamic characteristic of the cantilever rail beam, the optimal parameter of the Positive position feedback(PPF) controller is determined by a series of experiment. Then, we apply this control system to suppress the vibration of the system due to various kinds of dynamic disturbance. Furthermore, we take the image of the vibration of the cantilever beam by camera and apply the DIC technical to analyze the transient motion of the system. This technique is developed in our laboratory and is able to measure the large displacement in the free end of the cantilever beam. Thus the suppression result for the large vibration amplitude can be evaluated. In the past, one FBG with power modulated sensing technique can only be use to measure strain or displacement for one point. It is unable to measure transient behavior of multiple points simultaneously by only one fiber. Hence,in the second part of this thesis, we add Wavelength Division Multiplexer(WDM) in the system to measure transient response of multiple points using only one fiber, and compare the results with finite element method (FEM).In the final part, we develop a new measuring system by using two WDM which has potential for industrial applications.