透過您的圖書館登入
IP:3.149.231.128
  • 學位論文

以CMOS製程開發微型光柵應用於基因定量分析

Development of CMOS gratings for spectrometer in Real-Time PCR

指導教授 : 陳炳煇

摘要


本研究首先介紹並且根據 Real-Time PCR 光學檢測系統的架構和需求,以 CMOS 製程技術為基礎去設計和選取適當的光柵製程參數與形狀,利用半導體製成方式製作 CMOS 光柵並且加以後製程,其光柵面積為 2 mm × 2 mm ,接著利用光學擬真模擬光路軟體 TracePro 來模擬光學實驗裝置的配置相對位置,並且量測 DNA 樣本試劑激發螢光之光譜,最後和商用光柵之實驗結果互相做比較,以探討 CMOS 製程光柵的性能和效益。 實驗結果顯示,本研究利用半導體製程成功開發出專用於 Real-Time PCR 光學檢測系統的光柵, CMOS 光柵能量測到 DNA 樣本試劑的所激發螢光訊號,而其光柵的面積較一般市售光柵可減少其光柵面積 80 % ,並且降低光柵製作 21 % 的成本。在 Real-Time PCR 分光系統光柵的設計,本論文提供了另一個製程的方向和參數,以作為將來改良的參考。

並列摘要


First, according to the structure and need of the optics examination system in Real-Time PCR and the CMOS manufacturing process technique, this study go to develop the parameter and shape of grating. The size of CMOS grating designed is 2 mm × 2 mm. Second, the simulation imitates the light road of optics experiment equip by light tracing imitating software TracePro. Third, the experiments measure the fluorescence spectrum of the DNA sample. Finally, in order to inquire into the function and the benefit of the CMOS grating, the results compare the experiment of the CMOS grating with the commercial grating. Test the result manifestation, the CMOS grating can measures the fluorescence of DNA sample and this research makes use of the CMOS grating that to be used particularly for the Real-Time PCR optics examination system successfully. Besides, the area of CMOS grating can reduce 80% comparing with the commercial grating and the cost of CMOS grating can reduce 21% comparing with commercial. To design the optics examination system in Real-Time PCR, this thesis provided another direction of manufacturing process and parameter to is the reference that the future improves.

並列關鍵字

CMOS grating REAL-TIME PCR

參考文獻


國家奈米元件實室http://www.ndl.org.tw/ndl2006/index.html
Bandara, S.V., Gunapala, S.D., and Liu, J. K., 1997, “ Two dimensional Periodic Grating Light Coupling in Quantum Well Infrared Photodetectors, ” Proceedings of SPIE ,3061 , pp. 758-763.
Collischon, M., Haidner, H. and Kipfer, P., 1995, “ Optimized artificial index gratings, ” Infrared Physics and Technology, 36, pp. 915-921.
Farn, M. W., 1992, “Binary gratings with increased efficiency,” Appl. Opt., 31, pp. 4453-4458.
Kwa, T. A., and Wolffenbuttel, R. F., 1992, “ Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors and Actuators A, 31, pp. 259-266.

延伸閱讀