透過您的圖書館登入
IP:3.149.240.185
  • 學位論文

應用於微波與毫米波之影像及車用雷達系統

Design of Microwave and Millimeter-wave Radar Systems for Imaging and Automotive Applications

指導教授 : 李致毅
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文的研究內容為微波與毫米波雷達系統,三個獨立的雷達系統分別應用於W頻段及K頻段被提出,包含雷達晶片及組裝模組。 在本論文中,一個操作於94-GHz高度整合的W頻段影像雷達被實現。利用相位陣列饋入技術達成電子掃瞄,準確測距技術則應用於距離偵測中。四個收發機作為影像感應器的前端電路,藉由相移器及功率合成器調整波束方向。內部31.3-GHz時脈訊號和三倍頻器提供了射頻載波及測距所需之計數時脈。應用覆晶技術將製作於低溫共燒陶瓷之天線與晶片組裝為一體積僅6.5 x 4.4 x 0.8立方公分之微小型模組。以台積65奈米製程制作,在1.2伏特的供應電壓下消耗960毫瓦之功率,晶片面積為3.6 x 2.1平方毫米。本原型達到+/-28度之掃瞄範圍,最遠2公尺之偵測距離及1毫米的距離解析度。 一個79-GHz高度整合的雙向脈波雷達系統應用注入再生接收機技術以65奈米CMOS製程實現。本系統應用新穎的阻抗轉換技術於功率放大器/低雜訊放大器中,比起傳統利用射頻切換器的架構,發射機效率及接收機雜訊指數皆有大幅度改善。本系統提出的注入再生振盪器也提高了接收機的增益及系統效率。量測之發射機輸出功率峰值及接收機轉換增益分別為9.2 dBm和42 dB。利用8 x 8平板天線配合板上匹配網路補償磅線效應,發射機之等效全向輻射功率為25 dBm,而E和H平面之波束寬度分別為11.5度和10度。測距範圍在0.3 ~ 1.5公尺間最大誤差量為7.2毫米。在1.2伏特的供應電壓,操作0.1%工作周期之脈波調變下共消耗107毫瓦之功率。 最後,一個高度整合之K頻段一發射機/四接收機脈波調變雷達系統以65奈米CMOS製程實現。利用8 x 8巴特勒矩陣波束合成器,在1公尺的距離下,本原型達成超過90度之雷達可視範圍及30度的角度解析度。可切換的功率放大器改善了平均載波洩漏功率及功率消耗。可程式化的脈波寬度、脈波重複時間,及針對鎖相迴路的溫度補償等技術使本雷達系統更加堅固。量測距離誤差在1.2公尺範圍內皆小於9.1毫米,在0.06%工作周期脈波調變操作下共消耗149毫瓦之功率。

並列摘要


This dissertation presents the research on microwave and millimeter-wave radar systems. Three individual radar systems operating in W-band and K-band have been reported, including the chipsets and assembly modules. A fully-integrated W-band 3D image radar engine operated at 94 GHz utilizing phased-array-fed for electrical scanning and precise ranging technique for distance measurement has been realized. Four transmitters and four receivers form a sensor frontend with phase shifters and power combiners adjusting the beam direction. A built-in 31.3-GHz clock source and a frequency tripler provide both RF carrier and counting clocks for the distance measurement. Flipchip technique with low-temperature co-fired ceramic (LTCC) antenna design creates a miniature module as small as 6.5 x 4.4 x 0.8 cm^3. Designed and fabricated in 65-nm CMOS technology, the transceiver array chip dissipates 960 mW from a 1.2-V supply and occupies chip area of 3.6 x 2.1 mm^2. This prototype achieves +/-28° scanning range, 2-m maximum distance, and 1-mm depth resolution. A 79-GHz fully-integrated bidirectional pulse radar system with injection-regenerative receiver is demonstrated in 65 nm CMOS. The novel design for the impedance transformation of PA/LNA improves the TX efficiency and RX noise figure significantly in comparison with the traditional RF switch. The injection-regenerative oscillator is proposed to increase the receiver gain as well as the system efficiency. The measured TX peak Pout and RX conversion gain are 9.2 dBm and 42 dB, respectively. Using an 8 × 8 patch antenna array with on board matching network to compensate bonding wire effect, the TX EIRP is 25 dBm with the beamwidth of 11.5° and 10° in E and H plane, respectively. The distance measurement for 0.3 ~ 1.5 m with the maximum error of less than 7.2 mm. The overall dc consumption is only 107 mW from a single 1.2 V supply under pulse modulation with 0.1% duty cycle. Finally, a K-band fully-integrated 1TX/4RX pulse-modulated radar system fabricated in 65-nm CMOS technology is presented. Due to the 4 x 4 Butler matrix beamformer, this prototype achieves >90° radar field of view with 30° angular resolution at a distance of 1 m. The switchable PA improves the average carrier leakage power as well as the power consumption. The programmable pulse width, pulse repetition interval, and the temperature compensation technique in PLL, making the radar system more robust. The measured distance error is less than 9.1 mm inside the range of 1.2 m with the average power consumption of only 149 mW under pulse modulation with 0.06% duty cycle.

參考文獻


[1] V. Jain et al., “A 22–29-GHz UWB pulse-radar receiver front-end in 0.18-um CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1903–1914, Aug. 2009.
[3] T. H. Ho et al., “A compact 24 GHz radar sensor for vehicle sideway-looking applications,” in Proc. Eur. Microwave Conf., Oct. 2005, pp. 351–354.
[7] Ian Gresham et al., “Ultra-wideband radar sensors for short-range vehicular applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2105–2122, Sep. 2004.
[8] D. M. Sheen et al., “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1581-1592, Sep. 2001.
[9] L. Q. Bui et al., “94 GHz FMCW radar for low visibility aircraft landing system,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1991, vol. 3, pp. 1147-1150.

延伸閱讀