透過您的圖書館登入
IP:3.135.198.49
  • 學位論文

利用光學元件量測液晶分子長度之研究

Measurement of LC Molecular Length by Simple Optical Device

指導教授 : 趙治宇

摘要


在本實驗中,我們可以利用可見光量來測液晶分子的長度,在這裡我們所使用的液晶分子長度只有兩、三個奈米,遠小於可見光的光波長,要精準量測分子長度利用到液晶薄膜在低層數時有趣的量化現象。實驗中量測9O.4、7O.4、6O.4這一系列的液晶材料,已用來確認我們能否區分一個碳原子所造成的區別。為了計算液晶分子長度,我們還需要量測各材料的尋常光折射率 (ordinary refraction index),利用觀察光線在液晶晶胞中產生的干涉條紋,我們可以藉由模擬比對來反推出液晶材料的尋常光折射率,解析度能夠達到 ± 0.003,由此推算的分子長度解析度可以達到埃的等級,而且整個實驗架設只需用到十分簡便的光學元件,在往後的研究中,我們可以十分簡便的就得到液晶分子長度和尋常光折射率的資訊。

關鍵字

液晶 分子長度 折射率

並列摘要


In our experiments, we will show how to calculate the liquid crystal (LC) molecule length by observing the reflectivity of thin LC films. We measure three LCs, 9O.4, 7O.4 and 6O.4, to compare their molecule length. Since we still need the information of ordinary refraction index (no), we observe the interference patterns reflected from the LC cell. We can measure no by comparing the patterns which we stimulated with the interference patterns we observed. The accuracy of no can be achieved to ± 0.003. Thus the measurement accuracy of the LC molecule length can be achieved to angstrom scale.

並列關鍵字

LC liquid crystal refraction index molecular length

參考文獻


[1] P. C. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley and Sons, New York, 1997)
[2] I. C. Khoo and F. Simoni, Physics of Liquid Crystalline Materials, (Gordon and Breach, Philadelphia, 1988)
[4] D. Berreman, Phys. Rev. Lett. 28, 1683 (1972)
[5] P. J. Bos, K. R. Koehler/Beran, Mol. Cryst. Liq. Cryst. 113, 329-339 (1984).
[7] This relation was developed by the British physicist Sir George Gabriel Stokes (1819-1903)

延伸閱讀