透過您的圖書館登入
IP:3.133.149.168
  • 學位論文

相變化記憶體SPICE模型及電阻式記憶體物理機制之建立與極紫外光對異質接面雙極電晶體的影響分析

Development of Phase Change Random Access Memory SPICE Model and Physical Mechanism of Resistive Random Access Memory and Analysis of Effect of Extreme Ultra Violet on Heterojunction Bipolar Transistors

指導教授 : 劉致為

摘要


在本論文中,第一部分為研究極紫外光(EUV)對異質接面雙極電晶體(HBT)的影響。待測元件的製備為利用國家晶片系統設計中心(CIC)向臺灣積體電路製造公司(TSMC)委託生產測試鍵(Test-key)然後在國立同步幅射中心(NSRRC)進行照射。在台灣大學進行低頻量測,在國家奈米實驗室(NDL)進行高頻量測。利用量測分析結果為極紫外光會在元件的射極(Emitter)-基極(Base)的空乏區及基極-集極(Collector)產生缺限進而在直流量測使基極電流變大;在高頻量測使最大電流增益頻率上昇。第二部分為建立電阻式記憶體(RRAM)的物理機制模型,元件的製備及量測為工研院(ITRI)提供。物理機制解釋了電阻記憶體的成形(forming)、低阻態(LRS)的導通模式、高阻態(HRS)的導通模式、狀態轉換的機制、、、、、、。有些機制尚未能利用本模型解釋,或許引入彈道(ballistic)理論可以有效的解釋。第三部分為建立相變化記憶體(PCRAM)的SPICE模型。使用的模擬軟體為ELDO。量測數據為工研院提供。我們成功在文獻的基礎發展了一個更好的結構。解決了當系統溫度下降無法與系統溫度上昇分辨的問題。還有結晶分率的積分時間計算問題。並且成功的模擬量測的數據。

並列摘要


In this thesis, the first chapter is to research the EUV effect on HBTs, the device under test is a test-key made by TSMC, and irradiated with EUV at NSRRC. The DC measurement is conducted at NTU, and the AC S-parameter is measured at NDL. The results show the EUV will introduce traps in emitter-base and base-collector depletion region. The traps will enhance the generation current of base current to degrade the DC performance. The traps will delay the onset of Kirk effect to increase the frequency of unity current gain. The second part is to develop the physical mechanism of resistive random access memory (RRAM). The model interpret the forming mechanism, low resistance state (LRS) conduction, high resistance (HRS) conduction, state switching, cycling fluctuation, and multi-level operation well. However, the model cannot interpret the current density induced high temperature under LRS, and the low resistance value versus temperature measurement. Maybe the introduction of ballistic theory can interpret the phenomenon well. In the third chapter, the SPICE model development by ELDO of phase change memory (PCRAM) is developed based on previous reports. The structure with falling edge problem solved and crystallization time calibrated. The I-V and R-I curve are fit well and the cell temperature and crystallization fraction is well calculated.

並列關鍵字

EUV HBT RRAM PCRAM SPICE model

參考文獻


[1] J. A. Babcock, J. D. Cressler, L. S. Vempati, S. D. Clark, R. C. Jaeger, and D. L. Harame, “Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBTs,” IEEE Electron Device Lett., vol. 16, no. 8, pp. 351–353, Aug. 1995.
[2] J. D. Cressler, M. C. Hamilton, G. S. Mullinax, Y. Li, G. Niu, C. J. Marshall, P. W. Marshall, H. S. Kim, M. J. Palmer, A. J. Joseph, and G. Freeman, “The effects of proton irradiation on the lateral and vertical scaling of UHV/CVD SiGe HBT BiCMOS technology,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2515–2520, Dec. 2000.
[3] J. D. Cressler, R. Krithivasan, G. Zhang, G. Niu, P. W. Marshall, H. S. Kim, R. A. Reed, M. J. Palmer, and A. J. Joseph, “An investigation of the origins of the variable proton tolerance in multiple SiGe HBT BiCMOS technology generations,” IEEE Trans. Nucl. Sci., vol. 49, no. 6, pp. 3203–3207, Dec. 2002.
[6] M. Bellini, B. Jun, T. Chen, J. D. Cressler, P. W. Marshall, D. Chen, R. D. Schrimpf, D. M. Fleetwood, and J. Cai, “X-ray irradiation and bias effects in fully-depleted and partially-depleted SiGe HBTs fabricated on CMOS-compatible SOI,” IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3182–3186, Dec. 2006.
[7] M. Bellini, B. Jun, A. K. Sutton, A. C. Appaswamy, P. Cheng, J. D. Cressler, P. W. Marshall, R. D. Schrimpf, D. M. Fleetwood, B. El-Kareh, S. Balster, P. Steinmann, and H. Yasuda, “The effects of proton and X-ray irradiation on the DC and AC performance of complementary (npn + pnp) SiGe HBTs on thick-film SOI,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2245–2250, Dec. 2007.

延伸閱讀