透過您的圖書館登入
IP:18.222.144.244
  • 學位論文

晶圓廠智慧型排程系統之發展

Development of an Intelligent Scheduling System for a Semiconductor Foundry Fab

指導教授 : 黃漢邦
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於晶圓廠就如同一個大型的彈性製造系統且晶圓的製程相當複雜,因此派工問題對於生產控制扮演相當重要的角色。對於動態的派工系統而言有兩個關鍵性的議題主宰著彈性製造系統的效能;其中一個就是如何選出適當且關鍵的顯著系統資訊當作判斷系統狀況的指標,另外一個就是派工系統的設計方法-也就是所謂分類機器的設計。相對於單一個派工法則,如果我們能有效的依據一些有用的系統的資訊為當時的系統狀況選擇適合的派工法則並且建立一個動態的派工法則知識庫則會使得彈性製造系統的產出提高。為了提供彈性製造系統一個可以選取最佳系統資訊並且有高歸納力的分類器,本篇論文提出了一個自我組織的派工模型。為了達到上述的目標,本論文所提出的派工系統模型將會包含了模糊理論、基因演算法、還有類神經網路。除此之外,本研究更利用模擬軟體建立了一個彈性製造系統,並且在模擬實驗證明本論文所提出的動態派工模型相較於單一派工法則可以得到較優產出。

並列摘要


With the selection of the real-time salient information of machines and parts and then a rule’s dispatching mechanism is built for the scheduling task, the dynamic scheduling rules would outperform static ones in a flexible manufacturing system (FMS). Scheduling plays an important role in the production control in a foundry fab, which can be seen as a huge FMS. For a dynamic scheduling system, two critical issues dominate the performance of a scheduled FMS, one is the selection of system attributes and the other is the design of the dispatching mechanism, namely, the classifier design. This thesis proposes a self-organizing scheduling model (SOSM) aiming to provide a FMS with the optimal attribute selection and high generalization, high-accuracy classifier. The proposed scheduling model combines several intelligent methods to achieve these goals, including fuzzy set theory, genetic algorithms, and neural networks. A typical FMS model is conducted in the experiments for the demonstration. Experimental results show that the SOSM outperforms the static dispatching rules under three different performance criteria.

參考文獻


[1] Amit Adam, Ehud Rivlin, and Ilan Shimshoni, “ROR: rejection of outliers by rotations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 1, pp. 78-84, 2001.
[3] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 1997.
[4] C. Corts and V. N. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995
[6] O. Rose, Accelerating products under due-date oriented dispatching rules in semiconductor manufacturing, in: S. Chick, P.J. Sanchez, D. Ferrin, D.J. Morrice (Eds.), Proceedings of the 2003 WinterSimulation Conference, 2003, pp. 1346–1350.
[8] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. NewYork: Plenum Press, 1981.

延伸閱讀