石英的材料特性包括壓電性、絕緣性、透光性、高硬度、熱穩定性高等,是一種極具發展為元件潛力的材料。在石英材料上發展微奈米機電系統技術,最主要的瓶頸在於其加工困難度及非導電性在進行電子束微影時所產生之電荷累積效應。 在以石英作為材料的應用中,最新發展且獲普遍重視的就屬奈米壓印微影技術中的母模部分。奈米壓印微影有別於傳統微影技術,省去了必須逐件曝光、顯影等的製程步驟,取而代之的是先在母模定義出特定圖形,再重複壓印到塗佈有光阻的基材上,翻印母模上的圖形,如此一來,不僅大幅縮短製程所需時間與成本,更具備高產能的特性。 本研究使用導電樹酯Espacer300作為導電層,消除了石英在電子束曝光時產生的電荷累積。在電子束微影完成後,以金屬蒸鍍、lift-off技術,配合反應性離子乾蝕刻技術,製作出具備奈米線寬圖形的石英母模,而後於母模上進行脫模層表面處理後,進行光固化型奈米壓印,完成圖形之翻印。 本研究在電子束微影方面,已成功完成100奈米線寬的圖形;在lift-off技術方面,已完成200奈米線寬的金屬擋罩製作;在母模及壓印方面,已完成500奈米線寬的母模及圖形翻印。
Quartz has much potential to be developed as device because of its material properties including piezoelectricity, isolation, transparent, high hardness, and high thermal stability. The major obstacle to develop MEMS and NEMS technique on quartz is the machining difficulty and the charging problem resulted from isolation in e-beam exposure process. The latest and greatly-respected application of quartz is the mold in nanoimprint lithography technology (NIL). NIL differs from the traditional lithography in the process of exposure and development, which is replaced by the process that resist on substrate is imprinted by patterned mold. It is a high-throughput technique of saving much process time and cost. This research utilizes conducting polymer Espacer300 as conducting layer to dissipate charging effect. After E-beam lithography, quartz mold is fabricated by metal evaporation, lift-off, and reactive ion etch. Photo-solidification NIL is accomplished with the surface-treated mold. This research has completed 100 nm width e-beam lithography, 200nm width metal mask, 500 nm width mold and photo-solidification NIL.