透過您的圖書館登入
IP:3.15.221.67
  • 學位論文

藉由噴印之聚多巴胺圖樣製作高導電且可撓曲之導電銅薄膜

Fabricating Highly Conductive and Flexible Copper Thin Films by Printed Polydopamine Patterns

指導教授 : 廖英志

摘要


本論文提供一個簡單且迅速的方式製作高導電且可撓曲之銅薄膜。首先將多巴胺加入水溶液中進行自聚合形成聚多巴胺,經過透析步驟將溶液中鹽類去除,之後加入乙二醇、酒精來增進溶液成膜特性,再藉由pH值的調整將聚多巴胺奈米粒子穩定懸浮於溶液中,製作出易噴塗的聚多巴胺墨水(PDA ink)。利用壓電式噴墨印表機將墨水噴塗在70 ℃聚對苯二甲酸乙二酯(PET)上,能迅速的沉積出聚多巴胺薄膜。比較噴墨製程與傳統浸塗(dip coating)製程所得薄膜,在掃描式電子顯微鏡(SEM)中薄膜樣態相似,傅立葉轉換紅外光譜(FTIR spectrum)則顯示兩者有接近的圖譜。 接著嘗試在水相中進行聚多巴胺的表面修飾。剛透析完的聚多巴胺溶液中加入0.1wt%的硝酸銀,經過一小時的充分攪拌使其完全反應,之後加入乙二醇、酒精來增進溶液成膜特性,再藉由pH值的調整製作出穩定懸浮的銀修飾聚多巴胺墨水(Ag-PDA ink)。將墨水沉積在銅網上而用穿透式電子顯微鏡(TEM)觀察,能發現許多微小金屬粒子,噴塗在PET上的薄膜亦在掃描式電子顯微鏡(SEM)中觀察到明顯的銀粒子表面。另外,經由貼附測試(Tape test)可發現,薄膜沉積在不同基材上,證實此墨水應用在廣泛基材的可行性。 最後,將銀修飾聚多巴胺薄膜浸入銅化學鍍(electroless plating)鍍液中,可藉由表面銀粒子的催化,將銅還原在表面形成導電銅薄膜,導電率約為純銅的69% (2.5×10-6 Ω·cm)。以此方式在PET表面製作出的導電銅線,同樣具有良好的附著力,在彎曲測試(Bending test)中經過一萬次彎曲電阻只有些微上升。最後,將無線射頻辨識(RFID)圖樣銅薄膜製作在不同基材上,展現此製程應用於印刷電子器件的潛力。

並列摘要


In this thesis, we present a simple fabrication method to quickly create copper thin film patterns from a polydopamine-based primer ink. Polydopamine (PDA) inks were prepared by autopolymerization of dopamine to obtain polymer particle suspensions. After addition of silver nitrate, silver was recovered on the surface of PDA nanoparticles. The silver-doped PDA (Ag-PDA) suspension was inkjet-printed to form various patterns, which showed great adhesion on various plastic surfaces. After immersing the printed Ag-PDA patterns in an electroless metallization bath, highly conductive copper thin films were recovered with a resistivity of 2.5×10-6 Ω·cm. Bending tests showed that the resistance of plated copper thin films only increase slightly after being bent repeatedly for more than 10000 cycles. Patterns of copper thin films were also fabricated to demonstrate the possibility of applying this technique for printed electronics devices.

參考文獻


1. F. Gao, A. A. Sonin, Precise Deposition of Molten Microdrops: The Physics of Digital Microfabrication. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 444, 533 (1994).
2. T. Cuk, S. M. Troian, C. M. Hong, S. Wagner, Using convective flow splitting for the direct printing of fine copper lines. Applied Physics Letters 77, 2063 (2000).
3. T. Akter, W. S. Kim, Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl. Mater. Interfaces 4, 1855 (2012).
4. U. Zschieschang, H. Klauk, M. Halik, G. Schmid, C. Dehm, Flexible Organic Circuits with Printed Gate Electrodes. Adv. Mater. 15, 1147 (2003).
5. J. T. Delaney, A. R. Liberski, J. Perelaer, U. S. Schubert, A Practical Approach to the Development of Inkjet Printable Functional Ionogels—Bendable, Foldable, Transparent, and Conductive Electrode Materials. Macromolecular Rapid Communications 31, 1970 (2010).

延伸閱讀