目前壓電材料被廣泛地應用在許多方面,包括換能器、麥可風、致動器、感測器、濾波器與表面聲波元件,這些壓電元件是以壓電材料的彈性、壓電、介電常數與機電耦合係數來代表壓電元件的特性與效能,另一方面,脆性的壓電陶瓷材料,易於製造的過程與環境載荷的作用下,產生破裂進而影響壓電陶瓷材料的使用與穩定性,因此對於壓電陶瓷材料的製程及特性的探討更顯得重要;換言之,藉由建立一套完整的壓電陶瓷材料製程與壓電材料常數之量測方法,搭配有限元素軟體進行數值計算模擬,達到預測壓電元件的行為,並深入研究分析壓電元件的動態特性及元件在共振頻率下振動時的升溫現象。 本篇論文主要應用共振法、超音波法與超音波-共振法量測不同壓電陶瓷的彈性、壓電與介電常數,結合有限元素軟體進行數值計算分析不同壓電平板在自由邊界情況下的共振頻率與共振模態並與全域式的振幅變動電子斑點干涉術實驗量測結果相互驗證,為了增加實驗的正確性,則利用不同的實驗量測技術作相互驗證,在面外方向亦將利用雷射都卜勒振動儀搭配動態信號分析儀;在面內方向則是利用阻抗分析儀量測不同壓電平板在自由邊界情況下的共振頻率,並結合可全域式量測壓電陶瓷平板表面溫度分佈情形及溫度隨時間變化關係的紅外熱像儀,量測不同壓電平板在共振頻率下振動時的溫度變化,探討造成溫度升高、影響表面溫度分佈情形、最高溫度點出現的位置之因素及探討溫度變化對壓電平板的共振模態造成的影響。
Piezoelectric crystals and ceramics are widely applied in numerous applications including transducers, actuators, sensors, SAW device etc. The properties and efficiency of these piezoelectric materials are descried in terms of their basic parameters such as elastic, piezoelectric, dielectric constants and electromechanical coupling coefficients. In the other hand, brittle piezoceramic materials are easy to produce fracture in manufacturing processes and different loading conditions to influence their usefulness and stability. Thus, it is very important to study fabrications and characteristics of piezoelectric materials. Development of a complete method of measuring piezoelectric material constants and numerical simulation of finite element method reach to predict the dynamic behaviors of piezoelectric devices. At the same time, to research dynamic characteristics of piezoelectric material and their temperature rising phenomenon at resonant frequencies. In this dissertation, resonant method, ultrasonic method and combined ultrasonic-resonant method are used to measure a complete set of elastic, piezoelectric and dielectric constant for PZT with symmetry point group of 6mm and combination of FEM numerical calculation to simulate resonant frequencies and mode shape of piezoelectric plate in free boundary condition. In order to verify accuracy of FEM, we further applied three experimental techniques, AF-ESPI, LDV and impedance analyzer to obtain the vibration characteristics of piezoelectric plates and the experimental results are compared to FEM simulation. Finally, the relationship between temperature and vibration characteristics of piezoelectric plates is established base on experimental measurement of infrared thermography.