透過您的圖書館登入
IP:3.12.161.161
  • 學位論文

大氣電漿沉積二氧化矽薄膜阻燃應用

Flame Retardant of Silicon Dioxide Film Deposited by Atmospheric Pressure Plasma Chemical Vapor Deposition

指導教授 : 張所鋐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文係利用噴射式大氣電漿鍍膜技術,將二氧化矽薄膜沉積在高分子材料聚碳酸酯(Polycarbonate,PC)表面,並探討不同特性的二氧化矽薄膜對阻燃性質提升的影響。電漿氣體為氦氣並在電源以射頻(Radio Frequency, RF)13.56 MHz來驅動電漿源。使用有機矽源的四乙氧基矽烷(tetraethoxysilane,TEOS)當作沉積二氧化矽薄膜的前驅物。改變不同的前驅物流量、功率大小及氧氣流量等實驗因子,來掌握二氧化矽薄膜的特性,了解薄膜孔洞性的變化。使用霍氏轉換紅外光譜儀(FTIR)、原子力顯微鏡(AFM)及掃描型電子顯微鏡(SEM)來分析二氧化矽薄膜的特性,同時以最低限氧指數(limiting oxygen index, LOI)的量測做為探討阻燃性的依據。 經大氣電漿所沉積的二氧化矽薄膜其孔洞性會受到成膜速率的影響,實驗結果發現二氧化矽薄膜的孔洞性隨著成膜速率的上升而增加,因此欲沉積緻密性較高的薄膜,應選擇成膜速率較低的參數。從最低限氧指數的量測發現,原本未沉積二氧化矽薄膜的最低限氧指數為22,鍍上孔洞性低的薄膜,可提升最低限氧指數至27,而相對地,孔洞性高的薄膜,對於阻燃性質的提升並無改善的現象。

並列摘要


Atmospheric pressure (AP) plasma chemical vapor deposition (CVD) process is utilized in this paper. We coated silica films on polycarbonate (PC) to enhance the flame retardant of PC. The AP apparatus is developed by ITRI. The plasma reactor operates by feeding helium gas between two electrodes driven by a Radio frequency (RF) power at 13.56 MHz at atmospheric pressure and near room temperature. The organic silicon source tetraethoxysilane (TEOS) was utilized as the precursor of silica films. With distinct experiment factors, such as the flow rate of precursor, power and flow rate of oxygen, we measure the thickness to calculate deposition rate, surface roughness, and porosity of the film. Moreover, the variation of the film’s properties were analyzed by Fourier-transform infrared spectrometer (FTIR), atomic force microscope (AFM) and scanning electron microscopy (SEM). The promotion of PC’s flame retardant is illustrated by limiting oxygen index. The result presented the porosity of the silica film deposited by AP-PECVD increased with higher deposition rate. We should choose the lower deposition rate experiment parameter to get the denser film. The denser film coated on PC raised the LOI value from 22 to 27. However, the porous film can’t contribute any promotion to LOI value.

參考文獻


[2] A. Que′de′, C. Jama, P. Supiot, M. Le Bras, R. Delobel, O. Dessaux, P. Goudmand, “Elaboration of fire retardant coatings on polyamide-6 using a cold plasma polymerization process” ,Surface and Coatings Technology, 151 –152 (2002) 424–428
[4] A. Kuwabara, Shin-ichi Kuroda, H. Kubota, “Preparation of a CVD thin film by an atmospheric pressure low temperature surface discharge plasma torch”, Plasma Sources Science and Technology, Vol. 15, pp.328-331, 2006.
[5] S. E. Babayan, J. Y. Jeongy, V. J. Tuy, J. Parkz, G. S. Selwynz, R. F. Hicks, “Deposition of silicon dioxide films with an atmospheric-pressure plasma jet”, Plasma Source Science and Technology, Vol. 7, pp.286-288, 1998.
[6] Zygmunt Rymuza, Maciej Misiak, Zenobia Rzanek-Boroch, Krzysztof Schmidt-Szalowski, Jadwiga Janowska, “The effects of deposition and test conditions on nanomechanical behaviour of ultrathin films produced by plasma-enhanced chemical vapour deposition process at atmospheric pressure”, Thin Solid Films, Vol. 466, pp.158-166, 2004.
[7] G. R. Nowling, M. Yajima, S. E. Babayan, M. Moravej, X. Yang, W. Hoffman, R. F. Hicks, “Chamberless plasma deposition of glass coatings on plastic”, Plasma Source Science and Technology, Vol. 14, pp.477-484, 2005.

延伸閱讀