透過您的圖書館登入
IP:3.12.71.26
  • 學位論文

矽晶太陽能電池溫度係數分析與氫離子佈植鈍化保護

Analysis of Temperature Coefficient for Crystalline Silicon Solar Cells and Hydrogen Passivation by Plasma Immersion Ion Implantation

指導教授 : 劉致為
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文中,主要針對單晶矽與多晶矽太陽能電池進行效能分析,由Endeas 120CA 太陽光模擬器我們可測得太陽能電池效率、短路電流、開路電壓以及填充因子。除了基本AM1.5G條件下,同時還會針對變溫下的矽晶太陽能電池量測其暗電流及效率變化進行討論,並提出可能造成之原因。另外,我們也首次將電漿浸潤離子佈值技術應用在矽晶太陽能電池上,希望可以藉由氫離子佈值來達成更進一步的鈍化保護效果,使表面缺陷或者邊缺陷可被修復,已提升太陽能電池轉換效率。 首先在矽晶太陽能電池構造方面有基本介紹,並利用X射線光電子光譜(XPS)來分析表面材料組成,特別在接觸金屬與周圍抗反射層成分。在太陽能電池定性與定量上分析上,我們量測逆向偏壓電流與效率,短路電流,開路電壓與填充因子之關係;另在在溫度相依性上也有實驗量測與理論分析。 在變溫量測當中,我們發現多晶矽及單晶矽之溫度係數有差異,特別是短路電流方面有顯著差距,因而造成高溫時單晶矽效率下降幅度比多晶矽高。針對上述問題,我們朝著矽基板的電阻溫度係數性質來研究,初步推估原因可能是兩種基板雜質濃度不同,因此造成升溫時單晶矽與多晶矽基板電阻係數有所不同,最後影響到電流溫度係數。 電漿浸潤式離子佈植技術(PIII)目前可應用於太陽能電池相關製程,藉由佈植氫離子修補缺陷方式以提升太陽能電池轉換效率。其方法可透過不同的佈植能量與時間,控制電漿離子進入靶材深度以及離子濃度,加上三維方向離子佈植特性,元件各方向均可進行修復動作;同時,電漿浸潤式離子佈植亦適用於大面積元件佈植應用。除了實驗上結果之外,我們也使用ISE電腦模擬軟體來模擬表面載子復合速率與效率、短路電流、開路電壓和填充因子之間關係。

並列摘要


In this these, we mainly worked on performance analyses of the commercial monocrystalline and multicrystalline silicon solar cells. The efficiency, short-circuit current, open-circuit voltage and fill factor can be extracted for solar cells with Endeas QuickSun 120CA solar simulator. In addition to the standard AM1.5G condition, we simultaneously investigate in detail other factors including leakage effect and temperature effects. First of all, we introduce some basic structure and principles of solar cell, and then by using X-ray photoelectron spectroscopy (XPS) to analysis the composition of metal lines and antireflection coating layer. The relation between leakage current and efficiency, short-circuit current, open-circuit voltage and fill factor are investingated Besides, the characteristics of temperature dependence have experimental measurements and theoretical analysis. According to the previous temperature experiment, the temperature coefficient of multicrystalline silicon differs from monocrystalline silicon. Especially, on temperature coefficient of short-circuit current. As a result, the efficiency dropping for monocrystalline is more serious than multicrystalline on elevated temperature process. The reason we have derived from the temperature coefficient of resistivity for both type substrates are different result in different current temperature coefficient. The process of crystalline solar cell can corporate with plasma immersion ion implantation (PIII) technique. The method is to repair surface defect and edge defect in solar cell by implanting hydrogen ions. By adjusting implantation energy and time we can achieve optimum efficiency improvement. Besides, ISE simulations for solar cell show the relations of surface recombination velocity versus Isc, Voc, F.F and efficiency.

並列關鍵字

solar cell temperature coefficient PIII

參考文獻


[1]A. Kaminskia,*, B. Vandellea, A. Favea, J.P. Boyeauxa, Le Quan Namb, R. Monnab, D. Sartib, and A. Laugiera,” Aluminum BSF in silicon solar cells,” Solar Energy Materials & Solar Cells 72 (2002) 373–379
[4]E.E. Van Dyk, E.L. Meyer, “Analysis of the effect of parasitic resistances on the performance of photovoltaic module”, Renewable Energy 29 (2004), 33-344
[5]K. Nishioka, N. Sakitani, Y. Uraoka and T. Fuyuki, “Analysis of multicrystalline silicon solar cells by modied 3-diode equivalent circuit model taking leakage current through periphery into consideration,” Solar Energy Material & Solar cells 91 (2007), 1222-1227
[7]M. Langenkamp and O. Breitenstein, ”Classification of shunting mechanisms in crystalline silicon solar cells”, Solar Energy Material & Solar cells 72 (2002), 433-440
[10]W. M. Bullis, F. H. Brewer, C. D. Kolstad and L. J. Swartzendruber, “Temperature coefficient of resistivity of silicon and germanium near room temperature”, Solid-State Electronic Pergamon press1968 vol.11 pp639-646

延伸閱讀